Section A MASS WASTING

INTRODUCTION

This module summarizes the methods and results of a mass wasting assessment conducted on the Mendocino Redwood Company, LLC (MRC) ownership in the Elk Creek watershed, the Elk Creek Watershed Analysis Unit (Elk Creek WAU). California Planning Watersheds included in the Elk Creek WAU include portions of the Lower Elk Creek (CL) and Upper Elk Creek (CE). This assessment is part of a watershed analysis initiated by MRC and utilizes modified methodology adapted from procedures outlined in the Standard Methodology for Conducting Watershed Analysis (Version 4.0, Washington Forest Practices Board).

The principle objectives of this assessment are to:

- 1) Identify the types of mass wasting processes active in the basin.
- 2) Identify the link between mass wasting and forest management related activities.
- 3) Identify where the mass wasting processes are concentrated.
- 4) Partition the ownership into zones of relative mass wasting potential based on the likelihood of future mass wasting and sediment delivery to stream channels.

Additionally, the role of mass wasting sediment input to watercourses is examined. This information combined with the results of the Surface and Fluvial Erosion module is used to construct a sediment input summary for the Elk Creek WAU, contained in the Sediment Input Summary section of this watershed analysis.

The products of this report are: a landslide inventory map (Map A-1), a Terrain Stability Unit (TSU) map (Map A-2), and a mass wasting inventory database (Appendix A). The assembled information will enable forestland managers to make better forest management decisions to reduce management-induced risk of mass wasting. The mass wasting inventory will provide the information necessary to understand the spatial distribution, causal mechanisms, relative size, and timing of mass wasting processes active in the basin with reasonable confidence.

The Role of Mass Wasting in Watershed Dynamics

Mass wasting is a naturally occurring process, but can be accelerated by anthropogenic disturbances. Forest management practices can alter the natural frequency and magnitude of mass wasting events by changing the relative resisting and driving forces acting on a hillslope, altering soil and bedrock pore water pressures, and/or altering the effective cohesion of soil and bedrock. Increases in sediment yield due to mass wasting can disrupt the dynamic equilibrium of stream channels, resulting in a decline in the quality and quantity of amphibian and anadromous fish habitat, water quality, or stream ecology.

Mass wasting events are able to alter stream environments by increasing bed and suspended sediment loads, modifying the grain-size distribution of channel sediment, introducing woody debris, altering channel morphology by aggradation, damming and obstructing the channel, and in extreme cases scouring the channel to bedrock. Stream systems ultimately adjust to major alterations downstream, as well as upstream of individual mass wasting events. However, the consequences may last for a long while.

In the Pacific Northwest where anadromous fish are present, mass wasting can have both beneficial and adverse effects on salmonid habitat. Beneficial effects include formation of new spawning, rearing, and over-wintering habitat due to addition of coarse gravels to the channel.

The introduction of woody debris and boulders from landslides can increase cover and improve pool:riffle ratios. Adverse effects include filling of pools and scouring of riffles, blockage of fish access, disturbing side-channel rearing areas, and siltation of spawning gravels. The magnitude of these effects are dependent on the frequency, location, and intensity of mass wasting events, as well as the sediment transporting capabilities of a particular stream. Beneficial and adverse effects typically occur simultaneously, and the relative relationship between the two will vary, even for individual events. Because of their greater stream powers, larger streams and rivers adjust to mass wasting perturbations faster than smaller streams.

BEDROCK STRUCTURE AND LITHOLOGY IN THE ELK CREEK WAU

The Elk Creek WAU is underlain by bedrock of the Tertiary-Cretaceous Coastal Belt Franciscan, comprised predominately of interbedded sandstone and shale sequences with minor pebble conglomerate and greenstone (Manson, 1984). The Coastal Belt Franciscan is characterized by a relatively chaotic structure with shear zones, folds, and faults often juxtaposed with coherent sections of thin to massive sandstone and shale. Consistent with mass-flow type marine trench and trench-slope deposition, sedimentary structures are typically absent.

Local alluvial deposits are present along the higher order channels within the Elk Creek WAU, and remnant outcrops of relatively cohesionless marine sandstone of the Pliocene Ohlson Ranch Formation are mapped along the ridges in the basin. Remnants of the Ohlson Ranch Formation, and the residual soils that develop on the Ohlson Ranch, have been identified as a unique terrain stability unit based on the relatively high erodibility of the soils when surface water is allowed to concentrate for any significant distance. The Ohlson Ranch deposits are located on the low-gradient ridges in the basin where the likelihood of mass failure is relatively low because slopes are not steep. However, where first order ephemeral watercourses originate in these deposits, and connectivity exists to higher order tributaries, the potential for surface erosion and sediment delivery is relatively high so protections are provided including road run-off and erosion control measures.

The geomorphic expression of Elk Creek suggests structural control as the mainstem and larger tributaries trend consistently northwest-southeast, consistent with many of the larger rivers and creeks draining the Coastal Belt Franciscan. Previous mapping by Manson (1984) identifies an inactive fault with vertical offset trending the valley bottom along the entire length of the mainstem of Elk Creek. The fault is mapped as "inferred", likely based on the northwest-southeast linear drainage morphology that dominates the drainage. Although subsurface investigation (e.g. trench mapping) was beyond the scope of this report, no evidence of recent movement (e.g. surface rupture) was observed during the field reconnaissance, and the fault is not within an identified fault-rupture hazard zone per the Alquist Priolo fault hazard maps (DMG, 1997).

Based on field reconnaissance, available geologic and hydrologic maps, and published literature, no regional indicators of adverse rock type, structure, or groundwater conditions were identified. Locally, cohesionless deposits of the Ohlson Ranch Formation have been identified as a unique terrain stability unit, acknowledging the erodibility of this particular rock type.

LANDSLIDE TYPES AND PROCESSES IN THE ELK CREEK WAU

Landslide features are widespread over the Elk Creek WAU, owing to the relatively rapid down-cutting of Elk Creek in response to global sea level fluctuations and regional uplift. The terminology used to describe landslides in this report closely follows the definitions of Cruden

and Varnes (1996). This terminology is based on two nouns, the first describing the material that the landslide is composed of and the second describing the type of movement. Landslides identified in the Elk Creek WAU were described using the following names: debris slides, debris torrents, debris flows, and rockslides. These names are described in Cruden and Varnes (1996) with the exception of our use of debris torrent.

Shallow-Seated Landslides

Debris slides, debris flows, and debris torrents are terms used throughout Mendocino Redwood Company's ownership to identify shallow-seated landslide processes. The material composition of debris slides, flows, or torrents is considered to be soil with a significant proportion of coarse material; 20 to 80 percent of the particles are larger than 2 mm (Cruden and Varnes, 1996). Shallow-seated slides generally move quickly downslope and commonly break apart during failure. Shallow-seated slides commonly occur in converging topography where colluvial materials accumulate and subsurface drainage concentrates. Susceptibility of a slope to fail by shallow-seated landslides is affected by slope steepness, saturation of soil, soil strength (friction angle and cohesion), and root strength. Due to the shallow depth and fact that debris slides, flows, or torrents involve the soil mantle, these are landslide types that can be significantly influenced by forest practices.

Debris slides are the most common landslide type observed in the WAU. The landslide mass typically fails along a surface of rupture or along relatively thin zones of intense shear strain located near the base of the soil profile. The landslide deposit commonly slides a distance beyond the toe of the surface of rupture and onto the ground surface below the failure; it generally does not slide more than the distance equal to the length of the failure scar. Landslides with deposits that traveled a longer distance below the failure scar would likely be defined as a debris flow or debris torrent. Debris slides commonly occur on steep planar slopes, convergent slopes, along forest roads and on steep slopes adjacent to watercourses. They usually fail by translational movement along an undulating or planar surface of failure. By definition debris slides do not continue downstream upon reaching a watercourse.

A debris flow is similar to a debris slide with the exception that the landslide mass continues to "flow" down the slope below the failure a considerable distance on top of the ground surface. A debris flow is characterized as a mobile, potentially rapid, slurry of soil, rock, vegetation, and water. High water content is needed for this process to occur. Debris flows generally occur on both steep, planar hillslopes and confined, convergent hillslopes. Often a failure will initiate as a debris slide, but will change as its moves downslope to a debris flow.

Debris torrents have the greatest potential to destroy stream habitat and deliver large amounts of sediment. The main characteristic distinguishing a debris torrent is that the mass of failed soil and debris "torrents" downstream in a confined channel and erodes the channel. As the debris torrent moves downslope and scours the channel, the liquefied landslide material increases in mass. Highly saturated soil or run-off in a channel is required for this process to occur. Debris torrents move rapidly and can potentially run down a channel for great distances. They typically initiate in headwall swales and torrent down intermittent watercourses. Often a failure will initiate as a debris slide, but will develop into a debris torrent upon reaching a channel. While actually a combination of two processes, these features were considered debris torrents.

Deep-Seated Landslides

Rockslides and earthflows are terms used throughout Mendocino Redwood Company's ownership to identify deep-seated landslide processes. The failure dates of the deep-seated landslides could not be estimated with any confidence, they are likely to be of varying age with some potentially being over 10,000 years old. Many of the deep-seated landslides are considered

"dormant", but the importance of identifying them lies in the fact that if reactivated, they have the potential to deliver large amounts of sediment and impair stream habitat. Accelerated or episodic movement is likely to have occurred over time in response to seismic shaking or high rainfall events

Rockslides are deep-seated landslides with movement involving a relatively intact mass of rock and overlying earth materials. The failure plane is below the colluvial layer and involves the underlying bedrock. Mode of rock sliding generally is not strictly rotational or translational, but involves some component of each. Rotational slides typically fail along a concave surface, while translational slides typically fail on a planar or undulating surface of rupture. Rockslides commonly create a flat, or back-tilted, bench below the crown of the scarp. A prominent bench is usually preserved over time and can be indicative of a rockslide. Rockslides fail in response to triggering mechanisms such as seismic shaking, adverse local structural geology, high rainfall, offloading or loading material on the slide, or channel incision (Wieczorek, 1996). The stream itself can be the cause of chronic movement, if it periodically undercuts the toe of a rockslide.

Earth flows are deep-seated landslides composed of fine-grained materials and soils derived from clay-bearing rocks. Earth flow materials typically consist of 80% or more of particles smaller than 2mm (Cruden and Varnes, 1996). Materials in an earth flow also commonly contain boulders, some very large, which move down slope in the clay matrix. Failure in earth flows is characterized by spatially differential rates of movement on discontinuous failure surfaces that are not preserved. The "flow" type of movement creates a landslide that can be very irregularly shaped. Some earth flow surfaces are dominantly grassland, while some are partially or completely forested. The areas of grassy vegetation are likely due to the inability of the unstable, clay-rich soils to support forest vegetation. The surface of an earth flow is characteristically hummocky with locally variable slope forms and relatively abundant gullies. The inherently weak materials within earth flows are not able to support steep slopes, therefore slope gradients are low to moderate. The rates of movement vary over time and can be accelerated by persistent high groundwater conditions. Timber harvesting can have the effect of increasing the amount of subsurface water, which can accelerate movement in an earth flow (Swanston et al, 1988).

Use of SHALSTAB by Mendocino Redwood Company for the Elk Creek WAU

MRC uses SHALSTAB—a coupled steady state runoff infinite slope stability model—to assist with the mapping of the hazard potential of shallow-seated landslides (Dietrich and Montgomery, 1998). William Dietrich of the University of California (Berkeley) and David Montgomery of the University of Washington (Seattle) have published a validation study of the SHALSTAB model. Generally, they found that the SHALSTAB model correctly distinguishes areas more prone to shallow landslide instability. In mass wasting studies conducted in seven basins in northern California, they concluded that a log (q/T) threshold of less than -2.8 identifies the portion of the basin within which on average 57% of the shallow landslides mapped from aerial photographs are found. However, they also found that the performance of SHALSTAB depends strongly on the quality of the topographic data. The best readily available topographic data (10-m grid data from digitized USGS 7.5' quad maps) do not represent the fine scale topography that dictates the convergence of subsurface flow and the locations where shallow landslides are likely to occur. In our watershed analysis, we assess mass wasting hazards apart from SHALSTAB as well, using aerial photographs and field reconnaissance. However, we still use SHALSTAB output as one tool to assist with the interpretation of the landscape into terrain stability units.

METHODS

Landslide Inventory

The mass wasting assessment relies on an inventory of mass wasting features collected through the use of aerial photographs and field observations. MRC owned photographs from 2004 (color, 1:12,000), 2000 (color, 1:12,000), 1987 (black-and-white, 1:12,000), 1978 (color, 1:15,840), and 1967 (black and white, 1:15,840) were used, as were 1964 (black-and-white, 1:20,000), and 1947 (black-and-white, 1:20,000) photos on file at the Mendocino County Museum in Willits.

MRC collected data regarding characteristics and measurements of the identified landslides. We acknowledge that some landslides may have been missed, particularly small ones that may be obscured by vegetation. A brief description of select parameters inventoried for each landslide observed in the field and during aerial photograph interpretation is presented in Figure A-1. A detailed discussion of these parameters follows.

<u>Figure A-1</u>. Description of Select Parameters used to Describe Mass Wasting in the Mass Wasting Inventory.

• Slide Identification: Each landslide is assigned a unique identification number, a two letter code (see below) that denotes which planning watershed (PWS) the slide is located, and a number which indicates the USGS designated map section number the slide is mapped in.

Planning Watershed Codes:

CL – Lower Elk Creek

CE – Upper Elk Creek

- TSU # Terrain Stability Unit in which landslide is located.
- Landslide Type:

DS – debris slide

DF – debris flow

DT – debris torrent

RS - rockslide

EF - earthflow

- Certainty: The certainty of identification is recorded.
 - D Definite
 - P Probable
 - Q Questionable
- Physical Characteristics: Includes average length, width, depth, and volume of individual slides. Length of torrent, if present, is recorded as a comment.
- Sediment Routing: Denotes the type of stream the sediment was routed into.
 - P Perennial
 - I Intermittent or Ephemeral
 - N no sediment delivered
- Sediment Delivery: Quantification of the relative percentage of the landslide that delivered to the stream.
- Slope: Percent slope angle is recorded for all shallow-seated landslides observed in the field.

- Age: Relative age of the observed slide is estimated.
 - N new (< 5 years old)
 - R recent (5-10 years old)
 - O old (>10 years old)
- Slope Form: Denotes morphology of the slope where the landslide originated
 - C concave
 - D divergent
 - P planar
- Slide Location: Interpretation of the location where the landslide originated
 - H Headwall Swale
 - S Steep Streamside Slopes
 - I Inner Gorge
 - N Neither
- Road Association: Denotes the association of the landslide to land-use practices.
 - R Road
 - S Skid Trail
 - L Landing
 - N Neither
 - I Indeterminate
- Contributing Area: Categorical description of the area interpreted to concentrate surface and/or subsurface flow to the point of failure for non-road related slide points.
 - S Small, <0.5 acres
 - M Medium, 0.5 3.0 acres
 - L Large, >3.0 acres
- Aspect: Categorical description of the predominant cardinal direction the hillslope is facing for all slide points.
 - NE Northeast, 0°-89°
 - NW Northwest, 270°-359°
 - NE Southeast aspect, 90°-179°
 - NE Southwest aspect, 180°-269°
- Soil Type: County soil survey is used to attribute a soil type to each slide point. Soil types are grouped into similar grain size distributions based on the Unified Soil Classification System rating provided in the county survey.
 - C Coarse, soils consisting of gravel-sand-silt mixture (GM-GC, USCS Class.)
 - F Fine, soils consisting mainly of silt-clay (CL-ML, USCS Class.)
 - M Mixed, soils with coarse and fine material (GC-CL)
- MRC Structure Class: 24 forest stand classes are used to describe the forest conditions across the MRC timberland. In this assessment this information is used to build a database of forest conditions upslope of recent (2001-2004 time period) non-road related failures. Structure classes are generated by classifying the following stand attributes:
 - Dominant Species
 - o Dominant Diameter
 - o Canopy Cover (%)
- Deep-seated landslides morphologic descriptions: toe, body, lateral scarps, and main scarp (see section below on Systematic Description of Deep-seated Landslide Features).

Landslides identified in the field and from aerial photograph observations are plotted on a landslide inventory map (Map A-1). All shallow-seated landslides are identified as a point plotted on the map at the interpreted head scarp of the failure. Deep-seated landslides are represented as a polygon representing the interpreted perimeter of the landslide body. Physical

and geomorphic characteristics of all inventoried landslides are categorized in a database in Appendix A. Landslide dimensions and depths can be quite variable, therefore length, width, and depth values that are recorded are considered to be the average dimension of that feature. When converting landslide volumes to mass (tons), we assume a soil bulk density of 1.35 grams/cubic centimeter.

The certainty of landslide identification is assessed for each landslide. Three designations are used: definite, probable, and questionable. Definite means the landslide definitely exists. Probable means the landslide probably is there, but there is some doubt in the analyst's interpretation. Questionable means that the interpretation of the landslide identification may be inaccurate; the analyst has the least amount of confidence in the interpretation. Accuracy in identifying landslides on aerial photographs is dependent on the size of the slide, scale of the photographs, thickness of canopy, and logging history. Landslides mapped in areas recently logged or through a thin canopy are identified with the highest level of confidence. Characteristics of the particular aerial photographs used affects confidence in identifying landslides. For example, sun angle creates shadows which may obscure landslides, the print quality of some photo sets varies, and photographs taken at small scale makes identifying small landslides difficult. The landslide inventory results are considered a minimum estimate of sediment production. This is because landslides that were too small to identify on aerial photographs may have been missed, landslide surfaces could have reactivated in subsequent years and not been quantified, and secondary erosion by rills and gullies on slide surfaces is difficult to assess.

The technique employed to extrapolate a sediment volume delivery percentage to landslides not visited in the field relied on an average of those that were visited in the field. While this averaging technique is an oversimplification of actual on the ground sediment delivery measurements, it provides a means for estimating sediment delivery from the slides not visited in the field.

Landslides were classified based on the likelihood that a road associated land use practice was associated with the landslide. In this analysis, the effects of silvicultural techniques were not observed. The Elk Creek WAU has been managed, recently and historically, for timber production. Therefore, it was determined that the effect of silvicultural practices was too difficult to confidently assign to landslides. There have been too many different silvicultural activities over time for reasonable confidence in a landslide evaluation based on silviculture. The land use practices that were assigned to landslides were associations with roads, skid trails, or landings. It was assumed that a landslide adjacent to a road, skid trail, or landing was triggered either directly or indirectly by that land use practice. If a landslide appeared to be influenced by more than one land use practice, the more causative one was noted. If a cutslope failure did not cross the road prism, it was assumed that the failure would remain perched on the road, landing, or skid trail and would not deliver to a watercourse. Some surface erosion could result from a cutslope failure and is assumed to be addressed in the road surface erosion estimates (Surface and Fluvial Erosion Module).

Sediment Input from Shallow-Seated Landslides

The overall time period used for mass wasting interpretation and sediment budget analysis is sixty-seven years. Sediment input to stream channels by mass wasting is quantified for seven time periods (1938-1947, 1948-1964, 1965-1967, 1968-1978, 1979-1987, 1988-2000, 2001-2004). The evaluation assumes that approximately the last 10 years of mass wasting can be observed in the aerial photograph. This is due to landslide surfaces revegetating quickly, making small mass wasting features older than about 10 years difficult to see. We acknowledge that we have likely missed an unknown quantity of small mass wasting events during the aerial

photograph interpretation. However, we assume we have captured the majority of the larger mass wasting events in this analysis.

Sediment delivery estimates from mapped shallow-seated landslides were used to produce the total mass wasting sediment input. In order to extrapolate depth to the shallow-seated landslides not visited in the field, an average was taken from the measured depths of landslides visited in the field. Field measurements revealed a similar distribution of depths for management associated (which includes roads, skid trails, and landings), and non-management associated shallow-seated landslides. Therefore, the shallow-seated landslides not verified in the field were assigned the average depth from field verified landslides. In order to extrapolate sediment delivery percentage to landslides not verified in the field, an average was taken from the estimated delivery percentage of field verified landslides.

Delivery statistics were not calculated for deep-seated landslides, however, some of the sediment delivery from shallow-seated landslides is the result of conditions created by deep-seated landslides. For example, a deep-seated failure could result in a debris slide or torrent, which could deliver sediment. Furthermore, over-steepened scarps or toes of deep-seated landslides may have shallow failures associated with them. These types of sediment delivery from shallow-seated landslides associated with deep-seated landslides are accounted for in the delivery estimates.

Sediment Input from Deep-Seated Landslides

Large, active, deep-seated landslides can potentially deliver large volumes of sediment. Delivery generally occurs over long time periods compared to shallow-seated landslides, with movement delivering earth materials into the channel, resulting in an increased sediment load downstream of the failure. Actual delivery can occur by over-steepening of the toe of the slide and subsequent failure into the creek, or by the slide pushing out into the creek. It is very important not to confuse normal stream bank erosion at the toe of a slide as an indicator of movement of that slide. Before making such a connection, the slide surface should be carefully explored for evidence of significant movement, such as wide ground cracks. Sediment delivery could also occur in a catastrophic manner. In such a situation, large portions of the landslide essentially fail and move into the watercourse "instantaneously". These types of deep-seated failures are relatively rare on MRC property and usually occur in response to unusual storm events or seismic ground shaking.

Movement of deep-seated landslides has definitely resulted in some sediment delivery in the Elk Creek WAU. Quantification of the sediment delivery from deep-seated landslides was not determined in this watershed analysis. Factors such as rate of movement, or depth to the slide plane, are difficult to determine without subsurface geotechnical investigations that were not conducted in this analysis. Sediment delivery to watercourses from deep-seated landslides (landslides typically ≥ 10 feet thick) can occur by several processes. Such processes can include surface erosion and shallow-or deep-seated movement of a portion or all of the deep-seated landslide deposit.

The ground surface of a deep-seated landslide, like any other hillside surface, is subject to surface erosion processes such as rain drop impact, sheet wash (overland flow), and gully/rill erosion. Under these conditions the sediment delivery from surficial processes is assumed the same as adjacent hillside slopes not underlain by landslide deposits. The materials within the landslide are disturbed and can be arguably somewhat weaker. However, once a soil has developed, the fact that the slope is underlain by a deep-seated landslide should make little difference regarding sediment delivery generated by erosional processes that act at the ground surface. Although fresh, unprotected surfaces that develop in response to recent or active movement could become a source of sediment until the bare surface becomes covered with leaf litter, re-vegetated, or soils developed.

Clearly, movement of a portion or all of a deep-seated landslide can result in delivery of sediment to a watercourse. This determination is made by exploring for any evidence of movement. However, movement would need to be on slopes immediately adjacent to or in close proximity to a watercourse and of sufficient magnitude to push the toe of the slide into the watercourse. A deep-seated slide that toes out on a slope far from a creek or moves only a short distance downslope will generally deliver little to a watercourse. It is also important to realize that often only a portion of a deep-seated slide may become active, though the portion could be quite variable in size. Ground cracking at the head of a large, deep-seated landslide does not necessarily equate to immediate sediment delivery at the toe of the landslide. Movement of large deep-seated landslides can create void spaces within the slide mass. Though movement can be clearly indicated by the ground cracks, many times the toe may not respond or show indications of movement until some of the void space is "closed up". This would be particularly true in the case of very large deep-seated landslides that exhibit ground cracks that are only a few inches to a couple of feet wide. Compared to the entire length of the slide, the amount of movement implied by the ground crack could be very small. This combined with the closing up or "bulking up" of the slide, would not generate much movement, if any, at the toe of the slide. Significant movement, represented by large wide ground cracks, would need to occur to result in significant movement and sediment delivery at the toe of the slide.

Systematic Description of Deep-seated Landslide Features

The characteristics of deep-seated landslides received less attention in the landslide inventory than shallow-seated landslides mainly due to the fact that subsurface analyses would have to be conducted to estimate attributes such as depth, volume, failure date, current activity, and sediment delivery. Subsurface investigation was beyond the scope of this report. Few of the mapped deep-seated landslides were observed to have recent movement associated with them, mainly due to oversteepening of the slope at the toe or scarp. Further assessment of deep-seated landslides will occur on a site-by-site basis in the Elk Creek WAU, likely during timber harvest plan preparation and review.

Deep-seated landslides were mainly interpreted by reconnaissance techniques (aerial photograph interpretation complemented by limited field observations). Reconnaissance mapping criteria consist of observations of four morphologic features of deep seated landslides – toe, internal morphology, lateral flanks, main scarp, and vegetation (after McCalpin 1984 as presented by Keaton and DeGraff, 1996, p. 186, Table 9-1). The mapping and classification criteria for each feature are presented in detail below.

Aerial photo interpretation of deep seated landslide features in the Elk Creek WAU suggests that the first three morphologic features above are the most useful for inferring the presence of deep-seated landslides. The presence of tension cracks and/or sharply defined and topographically offset scarps are probably a more accurate indicator of recent or active landslide movement. These features, however, are rarely visible on aerial photos.

Sets of five descriptions have been developed to classify each deep-seated landslide morphologic feature or vegetation influence. The five descriptions are ranked in descending order from characteristics more typical of active landslides to dormant to relict landslides. One description should characterize the feature most accurately. Nevertheless, some overlap between classifications is neither unusual nor unexpected. We recognize that some deep-seated landslides may lack evidence with respect to one or more of the observable features, but show strong evidence of another feature. If there is no expression of a particular geomorphic feature (e.g. lateral flanks), the classification of that feature is considered "undetermined". If a deep-seated landslide is associated with other deep-seated landslides, it may also be classified as a landslide complex.

In addition to the classification criteria specific to the deep-seated landslide features, more general classification of the strength of the interpretation of the deep-seated landslide is conducted. Some landslides are obscured by vegetation to varying degrees, with areas that are clearly visible and areas that are poorly visible. In addition, weathering and erosion processes may also obscure geomorphic features over time. The quality of different aerial photograph sets varies and can sometimes make interpretations difficult. Owing to these circumstances, each inferred deep-seated landslide feature is classified according to the strength of the evidence as definite, probable or questionable as defined with respect to interpretation of shallow landslides.

At the project scale (THP development and planning), field observations of deep-seated landslide morphology and other indicators by qualified professionals are expected to be used to reduce uncertainty of interpretation inherent in reconnaissance mapping. Field criteria for mapping deep-seated landslides and assessment of activity are presented elsewhere.

Deep Seated Landslide Morphologic Classification Criteria:

I. Toe Activity

- 1. Steep streamside slopes with extensive unvegetated to sparsely vegetated debris slide scars. Debris slides occur on both sides of stream channel, but more prominently on side containing the deep-seated landslide. Stream channel in toe region may contain coarser sediment than adjacent channel. Stream channel may be pushed out by toe. Toe may be eroding, sharp topography/geomorphology.
- Steep streamside slopes with few unvegetated to sparsely vegetated debris slide scars.
 Debris slides generally are distinguishable only on streamside slope containing the deep-seated landslide. Stream channel may be pushed out by toe. Sharp edges becoming subdued.
- 3. Steep streamside slopes that are predominantly vegetated with little to no debris slide activity. Topography/geomorphology subdued.
- 4. Gently sloping stream banks that are vegetated and lack debris slide activity. Topography/geomorphology very subdued.
- 5. Undetermined

II. Internal Morphology

- 1. Multiple, well defined scarps and associated angular benches. Some benches may be rotated against scarps so that their surfaces slope back into the hill causing ponded water, which can be identified by different vegetation than adjacent areas. Hummocky topography with ground cracks. Jack-strawed trees may be present. No drainage to chaotic drainage/disrupted drainage.
- 2. Hummocky topography with identifiable scarps and benches, but those features have been smoothed. Undrained to drained but somewhat subdued depressions may exist. Poorly established drainage.
- 3. Slight benches can be identified, but are subtle and not prominent. Undrained depressions have since been drained. Moderately developed drainage to established drainage but not strongly incised. Subdued depressions but are being filled.
- 4. Smooth topography. Body of slide typically appears to have failed as one large coherent mass, rather than broken and fragmented. Developed drainage well established, incised. Essentially only large undrained depressions preserved and would be very subdued. Could have standing water. May appear as amphitheater slope where slide deposit is mostly or all removed.
- 5. Undetermined

III. Lateral Flanks

 Sharp, well defined. Debris slides on lateral scarps fail onto body of slide. Gullies/drainage may begin to form at boundary between lateral scarps and sides of slide deposit. Bare spots are common or partially unvegetated.

- 2. Sharp to somewhat subdued, rounded, essentially continuous, might have small breaks; gullies/drainage may be developing down lateral edges of slide body. May have debris slide activity, but less prominent. Few bare spots.
- 3. Smooth, subdued, but can be discontinuous and vegetated. Drainage may begin to develop along boundary between lateral scarp and slide body. Tributaries to drainage extend onto body of slide.
- 4. Subtle, well subdued to indistinguishable, discontinuous. Vegetation is identical to adjacent areas. Watercourses could be well incised, may have developed along boundary between lateral scarp and slide body. Tributaries to drainage developed on slide body.
- 5. Undetermined

IV. Main Scarp

- 1. Sharp, continuous geomorphic expression, usually arcuate break in slope with bare spots to unvegetated; often has debris slide activity.
- 2. Distinct, essentially continuous break in slope that may be smooth to slightly subdued in parts and sharp in others, apparent lack of debris slide activity. Bare spots may exist, but are few.
- 3. Smooth, subdued, less distinct break in slope with generally similar vegetation relative to adjacent areas. Bare spots are essentially non-existent.
- 4. Very subtle to subdued, well vegetated, can be discontinuous and deeply incised, dissected; feature may be indistinct.
- 5. Undetermined

V. Vegetation

- 1. Less dense vegetation than adjacent areas. Recent slide scarps and deposits leave many bare areas. Bare areas also due to lack of vegetative ability to root in unstable soils. Open canopy, may have jack-strawed trees; can have large openings.
- 2. Bare areas exist with some regrowth. Regrowth or successional patterns related to scarps and deposits. May have some openings in canopy or young broad-leaf vegetation with similar age.
- 3. Subtle differences from surrounding areas. Slightly less dense and different type vegetation. Essentially closed canopy; may have moderately aged to old trees.
- 4. Same size, type, and density as surrounding areas.
- 5. Undetermined

Terrain Stability Units

Terrain Stability Units (TSUs) are delineated by partitioning the landscape into zones characterized by similar geomorphic attributes, shallow-seated landslide potential, and sediment delivery to stream channels. A combination of aerial photograph interpretation, field investigation, and SHALSTAB output were utilized to delineate TSUs. The TSU designations for the Elk Creek WAU are only meant to be general characterizations of similar geomorphic and terrain characteristics related to shallow seated landslides. Deep-seated landslides are also shown

on the TSU map (Map A-2). The deep-seated landslides have been included to provide land managers with supplemental information to guide evaluation of harvest planning and subsequent needs for geologic review. The landscape and geomorphic setting in the Elk Creek WAU is certainly more complex than generalized TSUs delineated for this evaluation. The TSUs are only meant to be a starting point for gauging the need for site-specific field assessments.

The delineation of each TSU described is based on landforms present, the mass wasting processes, sensitivity to forest practices, mass wasting hazard, delivery potential, and forest management related trigger mechanisms for shallow seated landslides. The landform section of the TSU description defines the terrain found within the TSU. The mass wasting process section is a summary of landslide types found in the TSU. Sensitivity to forest practice and mass wasting hazard is, in part, a subjective call by the analyst based on the relative landslide hazard and influence of forest practices. Delivery potential is based on proximity of TSU to watercourses and the likelihood of mass wasting in the unit to reach a watercourse. The hazard potential is based on a combination of the mass wasting hazard and delivery potential (Table A-1). The trigger mechanisms are a list of forest management practices that may have the potential to create mass wasting in the TSU.

<u>Table A-1</u>. Ratings for Potential Hazard of Delivery of Debris and Sediment to Streams by Mass Wasting (L= low hazard, M= moderate hazard, H = high hazard)(from Version 4.0, Washington Forest Practices Board, 1995).

Mass Wasting Potential Moderate H

Delivery Potential

	Low	Moderate	Hign
Low	L	L	M
Moderate	L	M	H
High	L	M	H

RESULTS

Mass Wasting Inventory

A Landslide Inventory Data Sheet (Appendix A) was used to record attributes associated with each landslide. The spatial distribution and location of landslides is shown on Map A-1.

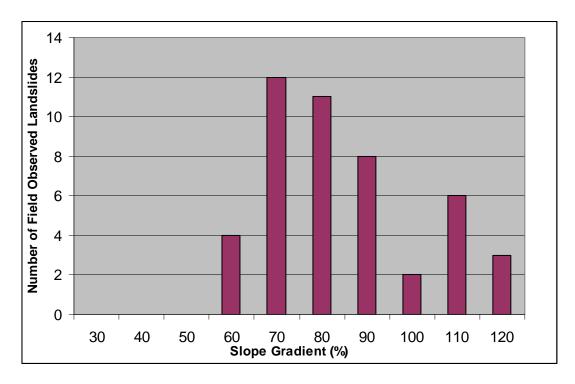
A total of 399 shallow-seated landslides (debris slides, torrents, or flows) were identified and characterized in the Elk Creek WAU. A total of 68 deep-seated landslides (rockslides and earthflows) were mapped in the Elk Creek WAU. A considerable effort was made to field verify as many landslides as possible to insure greater confidence in the results. Approximately 27% (106/399) of the identified shallow-seated landslides were field verified. From this level of field observations, extrapolation of landslide depth and sediment delivery is assumed to be performed with a reasonable level of confidence.

The temporal distribution of the 399 shallow-seated landslides observed in the Elk Creek WAU is listed in Table A-2. The distribution by landslide type is shown in Table A-3.

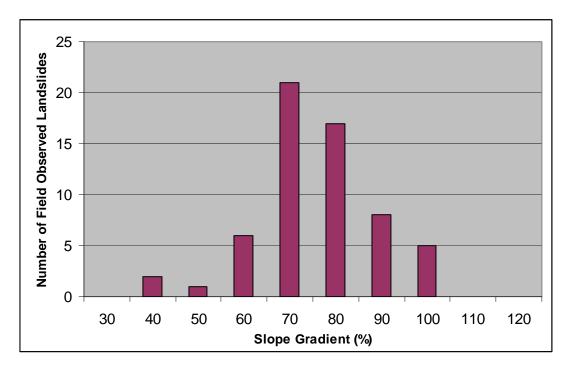
Table A-2. Shallo	w-Seated Landslide	Summary for Elk	Creek WAU by	Time Periods.
-------------------	--------------------	-----------------	--------------	---------------

Planning	1938 -	1948 -	1965 -	1968 -	1979 -	1988 -	2001 -
Watershed	1947	1964	1967	1978	1987	2000	2004
Lower Elk Creek	8	5	53	35	48	19	5
Upper Elk Creek	18	19	56	56	48	19	10
Elk Creek WAU	26	24	109	91	96	38	15

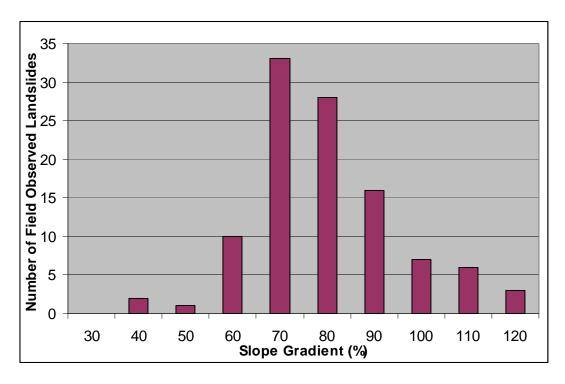
<u>Table A-3.</u> Landslide Summary by Type and Planning Watershed for Elk Creek WAU.


	Debris	Debris	Debris	Rock-	Earth-		Road ^a
Planning Watershed	Slides	Flows	Torrents	slides	flows	Total	Assoc.
Lower Elk Creek	161	9	3	29	1	203	130
Upper Elk Creek	198	25	3	30	8	264	107
Elk Creek WAU	359	34	6	59	9	467	237

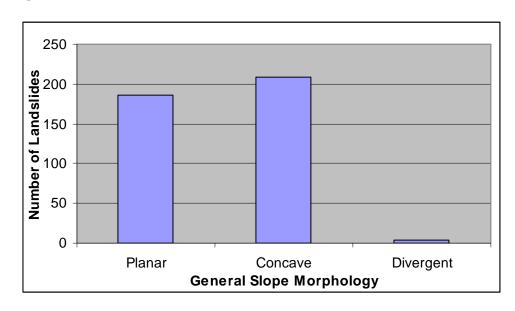
a – Includes roads, skid trails, and landings


The majority of the landslides observed in the Elk Creek WAU are debris slides. Of the 399 shallow-seated landslides in the Elk Creek WAU, 237 are determined to be road associated (includes roads, skid trails, or landings). This is approximately 60% of the total number of shallow-seated landslides. There were 40 debris torrents and flows observed in the Elk Creek WAU. This is approximately 10% of the total shallow-seated landslides observed in the Elk Creek WAU.

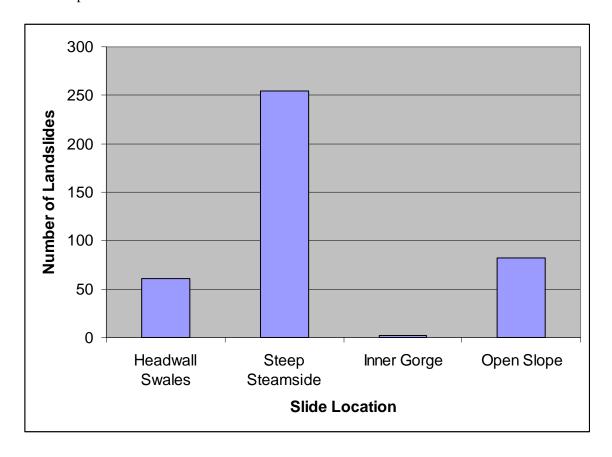
Of the 46 field observed shallow-seated landslides across the MRC Ownership in Lower Elk Creek, 91% (42/46) were initiated on slopes of 70% gradient or higher (Chart A-1). Of the 60 field observed shallow-seated landslides across the MRC Ownership in Upper Elk Creek, 85% (51/60) were initiated on slopes of 70% gradient or higher (Chart A-2). Of the 106 field observed shallow-seated landslides across the Elk Creek WAU, 88% (93/106) were initiated on slopes of 70% gradient or higher (Chart A-3).


<u>Chart A-1</u>. Slope Gradient Histogram for Shallow-Seated Landslides Occurring on MRC Ownership in Lower Elk Creek.

<u>Chart A-2</u>. Slope Gradient Histogram for Shallow-Seated Landslides Occurring on MRC Ownership in Lower Elk Creek.



<u>Chart A-3</u>. Slope Gradient Histogram for Shallow-Seated Landslides Occurring on MRC Ownership in the Elk Creek WAU.


The majority of inventoried landslides originated in convergent topography (209/399, or 52%) where subsurface water tends to concentrate, or on steep, planar topography (186/399, or 47%), where sub-surface water can be concentrated at the base of slopes, in localized topographic depressions, or by local geologic structure. Few landslides originated in divergent topography (4/399, or 1%), where subsurface water is typically routed to the sides of ridges (Chart A-4).

<u>Chart A-4</u>. Slope Morphology Summary for Shallow-Seated Landslides Occurring on MRC Ownership in the Elk Creek WAU.

A majority of the inventoried landslides were discovered along steep streamside slopes (254/399, or 64%), with fewer found in headwall swales (61/399, or 15%) and inner gorge slopes (2/399, or 1%) observed along the outside edge of meander bends. A significant portion (82/399, or 21%) of the inventoried landslides were observed on open slopes away from any inner gorge, steep streamside slopes, or headwall swales, however, a majority of these slides originated in fill material along the outside edge of roads and skid trails (Chart A-5). Such observations were, in part, the basis for the delineation of the WAU into Terrain Stability Units.

<u>Chart A-5</u>. Slide Location Summary for Shallow-Seated Landslides Occurring on MRC Ownership in the Elk Creek WAU.

Terrain Stability Units

The landscape was partitioned into seven Terrain Stability Units representing general areas of similar geomorphology, landslide processes, and sediment delivery potential for shallow-seated landslides (Map A-2). The units are to be used by forest managers to assist in making decisions that will minimize future mass wasting sediment input to watercourses. The delineation for the TSUs was based on qualitative observations and interpretations from aerial photographs, field evaluation, and SHALSTAB output. Deep-seated landslides are also shown on the TSU map (Map A-2). The deep-seated landslides have been included to provide land managers with supplemental information to guide evaluation of harvest planning and subsequent needs for geologic review.

Shallow-seated landslide characteristics considered in determination of map units are size, frequency, delivery to watercourses, and spatial distribution. Hillslope characteristics considered are slope form (convergence, divergence, planar), slope gradient, relative magnitude of stream incision, and overall geomorphology. The range of slope gradients was determined from USGS 1:24,000 topographic maps and field observations. Hillslope and landslide morphology vary within each individual TSU and the boundaries are not exact. This evaluation is not intended to be a substitute for site-specific field assessments. Site-specific field assessments will still be required in TSUs and at deep-seated landslides or specific areas of some TSUs to assess the risk and likelihood of mass wasting impacts from a proposed management action. The TSUs are compiled on the entitled Terrain Stability Unit Map (Map A-2).

TSU Number: 1

Description: Inner Gorge or Steep Streamside Slopes adjacent to Low Gradient

Watercourses

Materials: Shallow soils formed on weathered marine sedimentary rocks. Maybe

composed of toe sediment of deep-seated landslide deposit.

Landform: Characterized by steep streamside slopes or inner gorge topography

along low gradient watercourses (typically less than 6-7%). An inner gorge is a geomorphic feature created from down cutting of the stream, generally in response to tectonic uplift. Inner gorge slopes extend from either one or both sides of the stream channel to the first break in slope. Inner gorge slope gradients typically exceed 70%, although slopes with lower inclination are locally present. Inner gorge slopes commonly contain areas of multiple, coalescing shallow seated landslide scars of varying age. Steep streamside slopes are characterized by their lack of a prominent break in slope. Slopes are generally planar in form with slope gradients typically exceeding 70%. The upper extent of TSU 1 is variable. Where there is not a break in slope, the unit may extend 300 feet upslope (based on the range of lengths of landslides observed, 20-300 feet). Landslides in this unit generally deposit sediment directly into Class I and II streams. Small areas of incised terraces may be locally

present.

Slope: Typically >70 %, (mean slope of observed mass wasting events is 88%,

range is 60%-120%)

Total Area: 917 acres; 7% of the total WAU area.

MW Processes: 74 road-associated landslides

• 74 Debris slides

• 0 Debris flows

• 0 Debris torrents

47 non-road associated landslides

45 Debris slides

• 2 Debris flows

• 0 Debris torrents

Non Road-related

Landslide Density: 0.05 landslides per acre for the past 67 years.

Forest Practices

Sensitivity: High sensitivity to road construction due to proximity to watercourses,

high sensitivity to harvesting and forest management practices due to steep slopes with localized colluvial or alluvial soil deposits adjacent to

watercourses.

Mass Wasting

Potential: High localized potential for landslides in both unmanaged and managed

conditions.

Delivery Potential: High

Delivery Criteria

Used: Steep slopes adjacent to stream channels, a majority of the observed

landslides delivered sediment into streams.

Hazard-Potential

Rating: **High**

Forest Management Related Trigger Mechanisms:

- •Sidecast fill material placed on steep slopes can initiate debris slides or flows in this unit.
- •Concentrated drainage from roads onto unstable areas can initiate debris slides or flows in this unit.
- •Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit.
- •Cut-slope of roads can expose potential failure planes creating debris slides, torrents or flows in this unit.
- •Cut-slope of roads can remove support of the toe or expose potential failure planes of rockslides or earth flows.
- •Sidecast fill material created from skid trail construction placed on steep slopes can initiate debris slides or flows in this unit.
- •Concentrated drainage from skid trails onto unstable areas can initiate debris slides or flows in this unit.
- •Cut-slope of skid trails can remove support of slope creating debris slides, torrents or flows in this unit.
- •Cut-slope of skid trails can remove support of the toe or expose potential failure planes of rockslides or earth flows.
- •Concentrated drainage from roads can increase groundwater, accelerating movement of rockslides or earth flows and oversteepening TSU 1 slopes.
- •Removal of vegetation from these slopes can result in loss of evapotranspiration and thus increase pore water pressures that could initiate slope failure in this unit.
- •Post timber harvest root decay of hardwood or non-redwood conifer species can be a contributing factor in the initiation of debris slides, torrents or flows in this unit.

Confidence:

High confidence for susceptibility of landslides and sediment delivery in this unit. Moderate confidence in placement of the unit boundary. This unit is locally variable and exact boundaries are best determined during field observations. Within this unit there are likely areas of low gradient slopes that are less susceptible to mass wasting.

TSU Number: 2

Description: Inner gorge or Steep Streamside Slopes adjacent to high gradient

intermittent or ephemeral watercourses.

Materials: Shallow soils formed from weathered marine sedimentary rocks with

localized areas of thin to thick colluvial deposits.

Landforms: Characterized by steep streamside slopes or inner gorge topography

along low gradient watercourses (typically greater than 6-7%). An inner gorge is a geomorphic feature created from down cutting of the stream, generally in response to tectonic uplift. Inner gorge slopes extend from either one or both sides of the stream channel to the first break in slope. Inner gorge slope gradients typically exceed 70%, although slopes with lower inclination are locally present. Inner gorge slopes commonly contain areas of multiple, coalescing shallow seated landslide scars of varying age. Steep streamside slopes are characterized by their lack of a prominent break in slope. Slopes are generally planar in form with slope gradients typically exceeding 70%. The upper extent of TSU 2 is variable. Where there is not a break in slope, the unit may extend 300 feet upslope (based on the range of lengths of landslides observed, 25-300 feet). Landslides in this unit generally deposit sediment directly into

Class I and II streams.

Slope: Typically >70% (mean slope of observed mass wasting events is 80%,

range is 60%-100%).

Total Area: 1654 acres; 12% of total WAU area

MW Processes: 98 road-associated landslides

92 Debris slides4 Debris flows2 Debris torrents

48 non-road associated landslides

44 Debris slides3 Debris flows1 Debris torrent

Non Road-related

Landslide Density: 0.03 landslides per acre for the past 67 years.

Forest Practices Sensitivity:

High sensitivity to roads due to steep slopes adjacent to watercourses, high to moderate sensitivity to harvesting and forest management due to steep slopes next to watercourses. Localized areas of steeper and/or convergent slopes may have an even higher sensitivity to forest practices.

Mass Wasting

Potential: High in both unmanaged and managed conditions due to the steep

morphology of the slope.

Delivery Potential: High

Delivery Criteria

Used: Steep slopes adjacent to stream channels, a majority of the observed

landslides delivered sediment into streams.

Hazard-Potential

Rating: **High**

Forest Management Related Trigger Mechanisms:

•Sidecast fill material placed on steep slopes can initiate debris slides, torrents or flows in this unit.

- •Concentrated drainage from roads onto unstable areas can initiate debris slides, torrents or flows in this unit.
- •Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit.
- •Cut-slope of roads can expose potential failure planes creating debris slides, torrents or flows in this unit.
- •Cut-slope of roads can remove support of the toe or expose potential failure planes of rockslides or earth flows.
- •Sidecast fill material created from skid trail construction placed on steep slopes can initiate debris slides, torrents or flows.
- •Concentrated drainage from skid trails onto unstable areas can initiate debris slides, torrents or flows.
- •Cut-slope of skid trails can expose potential failure planes creating debris slides, torrents or flows in this unit.
- •Cut-slope of skid trails can remove support of the toe or expose potential failure planes of rockslides or earth flows.
- •Removal of vegetation from these slopes can result in loss of evapotranspiration and thus increase pore water pressures that could initiate slope failure in this unit.
- •Post timber harvest root decay of hardwood or non-redwood conifer species can be a contributing factor in the initiation of debris slides, torrents or flows in this unit.

Confidence: High confidence for susceptibility of unit to landslides and sediment

delivery. Moderate confidence in the placement of this unit. This unit is highly localized and exact boundaries are better determined from field observations. Within this unit there are likely areas of low gradient

slopes that are less susceptible to mass wasting.

3 TSU Number:

Description: Dissected and convergent topography

Materials: Shallow soils formed from weathered marine sedimentary rocks with

localized thin to thick colluvial deposits.

Landforms: These areas have steep slopes (typically greater than 65%) that have been

> sculpted over geologic time by repeated debris slide events. The area is characterized primarily by 1) steep convergent and dissected topography located within steep gradient collivial hollows or headwall swales and small high gradient watercourses, and 2) locally steep planar slopes where there is strong evidence of past landsliding. MRC intends this unit to represent areas with a high hazard potential for shallow landsliding. while not constituting a continuous streamside unit (otherwise it would classify as TSU 1 or 2). The mapped unit may represent isolated individual "high hazard" areas or areas where there is a concentration of "high hazard" areas. Boundaries between higher hazard areas and other more stable areas (i.e. divergent and lower gradient slopes) within the unit should be keyed out as necessary based on field observation of

landslide features.

Slope: Typically >70%, (mean slope of observed mass wasting events is 78%,

range is 60%-100%)

Total Area: 541 ac., 4% of the total WAU

MW Processes: 21 road associated landslides

> 19 Debris slides 2 Debris flows 0 Debris torrents

33 non-road associated landslides

25 Debris slides 8 Debris flows 0 debris torrents

Non Road-related

Landslide Density: 0.06 landslides per acre for the past 67 years.

Forest Practices

Sensitivity: Moderate to high sensitivity to road building, moderate to high

> sensitivity to harvesting and forest management practices due to moderate to steep slopes within this unit. Localized areas of steeper

and/or convergent slopes have even higher sensitivity to forest practices.

Mass Wasting

Potential: High

Delivery Potential: Moderate

Delivery Criteria Used:

The converging topography directs mass wasting down slopes toward watercourses. Delivery potential may be high based on relatively high number of debris slides. Landslides in headwater swales often torrent or flow down watercourses. Approximately 80% of landslides in this unit delivered sediment.

Hazard-Potential Rating:

High

Forest Management Related Trigger Mechanisms:

- •Sidecast fill material placed on steep slopes can initiate debris slides, torrents or flows in this unit.
- •Concentrated drainage from roads onto unstable areas can initiate debris slides, torrents or flows in this unit.
- •Concentrated drainage from roads can increase groundwater, accelerating movement of rockslides or earth flows in this unit.
- •Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit.
- •Cut-slope of roads can expose potential failure planes creating debris slides, torrents or flows in this unit.
- •Cut-slope of roads can remove support of the toe or expose potential failure planes of rockslides or earth flows.
- •Concentrated drainage from skid trails onto unstable areas can initiate debris slides, torrents or flows.
- •Cut-slope of skid trails can expose potential failure planes creating debris slides, torrents or flows in this unit.
- •Cut-slope of skid trails can remove support of the toe or expose potential failure planes of rockslides or earth flows.
- •Sidecast fill material created from skid trail construction placed on steep slopes can initiate debris slides, torrents or flows.
- •Removal of vegetation from these slopes can result in loss of evapotranspiration and thus increase pore water pressures that could initiate slope failure in this unit.
- •Post timber harvest root decay of hardwood or non-redwood conifer species can be a contributing factor in the initiation of debris slides, torrents or flows in this unit.

Confidence:

Moderate confidence in placement of unit. This unit is locally variable and exact boundaries are best determined from field observations. Some areas within this unit could have higher susceptibility to landslides and higher delivery rates due to localized areas of steep slopes, weak earth materials, and/or adverse ground water conditions.

TSU Number: 4

Description: Non-dissected topography

Materials: Shallow to moderately deep soils formed from weathered marine

sedimentary rocks.

Landforms: Moderate to moderately steep hillslopes with planar, divergent, or

broadly convergent slope forms with isolated areas of steep topography or strongly convergent slope forms. TSU 4 is generally a midslope region of lesser slope gradient and more variable slope form than TSU 3.

Slope: Typically 40% - 65%, (mean slope of observed mass wasting events is

77%, range is 40% - 100%)

Total Area: 9399 acres, 67% of the total WAU

MW Processes: 43 road-associated landslides

39 Debris slides2 Debris flows2 Debris torrents

29 non-road associated landslides

20 Debris slides8 Debris flows1 Debris torrent

Non Road-related Landslide Density:

0.003 landslides per acre for the past 67 years.

Forest Practices Sensitivity:

Moderate sensitivity to road building, moderate to low sensitivity to harvesting and forest management practices due to moderate slope gradients and non-converging topography within this unit. Localized areas of steeper slopes have higher sensitivity to forest practices.

Mass Wasting Potential:

Moderate

Delivery Potential: High

Delivery Criteria Used:

This unit constitutes a majority of the WAU, which accounts for it having the highest number of landslides. This unit has a low non-road related landslide density, and therefore has a moderate mass wasting hazard. Although landslides in this unit are localized, when landslides occur, the landslide has a high potential to deliver. Approximately 90% of the landslides in this unit delivered sediment. This unit has a moderate sensitivity to road building due to low road landslide density.

Hazard-Potential Rating:

Moderate

Forest Management Related Trigger Mechanisms:

- •Sidecast fill material placed on steep slopes can initiate debris slides, torrents or flows in this unit.
- •Concentrated drainage from roads onto unstable areas can initiate debris slides, torrents or flows in this unit.
- •Concentrated drainage from roads can increase groundwater, accelerating movement of rockslides or earth flows in this unit.
- •Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit.
- •Cut-slope of roads can expose potential failure planes creating debris slides, torrents or flows in this unit.
- •Cut-slope of roads can remove support of the toe or expose potential failure planes of rockslides or earth flows.
- •Concentrated drainage from skid trails onto unstable areas can initiate debris slides, torrents or flows.
- •Cut-slope of skid trails can expose potential failure planes creating debris slides, torrents or flows in this unit.
- •Cut-slope of skid trails can remove support of the toe or expose potential failure planes of rockslides or earth flows.
- •Sidecast fill material created from skid trail construction placed on steep slopes can initiate debris slides, torrents or flows.
- •Removal of vegetation from these slopes can result in loss of evapotranspiration and thus increase pore water pressures that could initiate slope failure in this unit.
- •Post timber harvest root decay of hardwood or non-redwood conifer species can be a contributing factor in the initiation of debris slides, torrents or flows in this unit.

Confidence:

High confidence in placement of unit, however, this unit is locally variable and exact boundaries are best determined from field observations. Some areas within this unit could have higher susceptibility to landslides and higher delivery rates due to localized areas of steep slopes, weak earth materials, and/or adverse ground water conditions.

TSU Number: 5

Description: Low relief topography

Material: Moderately deep to deep soils, derived from weathered marine

sedimentary rocks.

Landforms: Characterized by low gradient slopes generally less than 40%, although

in some places slopes may be steeper. This unit occurs on ridge crests, low gradient side slopes, and well-developed terraces. Shallow-seated landslides seldom occur and usually do not deliver sediment to stream

channels.

Slope: Typically <40% (based on field observations)

Total Area: 126 acres, 1% of WAU area

MW Processes: 0 landslides

Non Road-related

Landslide Density: 0 landslides per acre for past 67 years.

Forest Practices

Sensitivity: Low sensitivity to road building and forest management practices due to

low gradient slopes

Mass Wasting

Potential: Low

Delivery Potential: Low

Delivery Criteria

Used: Sediment delivery in this unit is low.

Hazard-Potential

Rating: Low

Forest Management Related Trigger Mechanisms:

Mechanisms: •Poorly sized culvert or excessive debris at watercourse

crossings can initiate failure of the fill material creating debris

slides, torrents or flows in this unit.

•Concentrated drainage from roads and skid trails can initiate or

accelerate gully erosion, which can increase the potential for

mass wasting processes.

Confidence: High confidence in placement of unit in areas of obviously stable

topography. High confidence in mass wasting potential and sediment

delivery potential ratings.

TSU Number: 6

Description: Earth Flow Topography

Materials: Fine-grained soils and clays of highly weathered and sheared marine

sedimentary rocks. Soils contain >80% particles less than 2mm in size

with boulders, some very large, within the soil matrix.

Landforms: Boundaries of this unit correspond to the mapped, deep-seated earth

flows from mass wasting inventory, regardless of state of activity. Characterized by hummocky slopes with localized areas of steep, and areas of flat topography. Slopes commonly contain areas of backtilted topography, creating ponded water. Ground surfaces in this unit

commonly contain areas of grassy vegetation, which may be attributed to the inability of the clay-rich soil to support dense forests. Gullies are common in this unit. Rate of movement within earth flows typically is variable and likely fluctuates seasonally according to groundwater conditions. Most of unit 6 is earth flow complexes with many scarps and

benches that create a step-like profile.

Slope: Typically <50%

Total Area: 259 acres; 2% of the total WAU.

MW Processes: 1 road-associated landslide

1 Debris slide0 Debris flows

• 0 Debris torrents

5 non-road associated landslides

• 0 Debris slides

• 5 Debris flows

• 0 Debris torrents

Non Road-related

Landslide Density: 0.02 landslides per acre for past 67 years.

Forest Practices

Sensitivity: High sensitivity to roads, harvesting, and forest management practices on

active earth flow surfaces. Potential forest practices in this unit should be assessed on a site-specific basis due to variable topography and differing

states of activity and rates of movement within an earth flow.

Mass Wasting

Potential: High

Delivery Potential: High

Delivery Criteria

Used:

Many of the earth flows in the Elk Creek WAU have the toe or lateral edges along watercourses. If earth flow movement occurs the landslides will deliver sediment.

Hazard Potential

Rating:

High

Forest Management Related Trigger Mechanisms:

- •Sidecast fill material placed on locally steep slopes can initiate debris slides, torrents or flows in this unit.
- •Concentrated drainage from roads onto unstable areas can initiate debris slides, torrents or flows in this unit.
- •Concentrated drainage from roads can increase groundwater, accelerating movement of earth flows of this unit.
- •Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit.
- •Cut-slope of roads can over-steepen the slope creating debris slides in this unit.
- •Concentrated drainage from skid trails onto unstable areas can initiate debris slides, torrents or flows in this unit.
- •Loss of evapotranspiration from forest harvest can increase groundwater levels initiating or accelerating movement of earth flows of this unit or aid in initiation of debris slides, torrents or flows
- •Concentrated drainage from roads and skid trails can initiate or accelerate gully erosion, which can increase the potential for mass wasting processes.
- •Cut-slope of skid trails can remove support of the toe or expose potential failure planes of earth flows.
- •Sidecast fill material created from skid trail construction placed on locally steep slopes can initiate debris slides, torrents or flows.
- •Root decay of hardwood or non-redwood conifer species can be a contributing factor in the initiation of debris slides, torrents or flows in this unit.

Confidence:

Confidence in delineation of unit is consistent with confidence level in mass wasting inventory mapping of deep-seated earth flows. High confidence in hazard potential rating due to relatively low hazard for shallow-seated landslides

TSU Number: 8

Description: Ohlson Ranch Formation

Materials: Fine-grained, relatively cohesionless, sandy material.

Landforms: Boundaries of this unit correspond to the mapped outcrops of the Ohlson

Ranch Formation (Manson, 1984). Slopes are characterized by relatively low gradient slopes found along broad wave cut ridge-tops. Ground surfaces in this unit contain areas of vegetation similar to the surrounding forest. Rills and gullies are common in this unit, particularly where roads and skid trails concentrate water for any significant distance.

Slope: Typically <30%

Total Area: 1181 acres; 8% of the total WAU.

MW Processes: 0 landslides

Non Road-related

Landslide Density: 0 landslides per acre for past 67 years.

Forest Practices

Sensitivity: High sensitivity to roads and skid trails, low sensitivity to harvesting of

trees. However, slopes underlain by this unit are not steep and therefore

usually harvested using ground based yarding where skid trails

Mass Wasting

Potential: Low

Delivery Potential: Moderate

Delivery Criteria

Used: All mapped exposures of the Ohlson Ranch Formation, and overlying

residual soils, typically occur on low gradient ridge-tops where run-off is generated through subsurface processes. However, where first order ephemeral watercourses originate in these deposits, and connectivity exists to higher order tributaries, the potential for surface erosion and sediment delivery is relatively high if roads and/or skid trails are not

properly constructed and/or drained after operations.

Hazard Potential

Rating: Low

Forest Management Related Trigger Mechanisms:

•Concentrated drainage from roads and skid trails can initiate or

accelerate gully erosion, which can increase the potential for

sediment delivery.

Confidence: High confidence in placement of unit in areas of obviously erodible

cohesionless sandy earth materials. High confidence in mass wasting

potential and sediment delivery potential ratings.

Sediment Input from Mass Wasting

Sediment delivery was estimated for shallow-seated landslides in the Elk Creek WAU. Depth values were estimated to facilitate approximation of mass for the landslides not observed in the field. In order to extrapolate depth to the shallow-seated landslides not visited in the field, an average was taken from the measured depths of landslides visited in the field. The mean depth of all shallow-seated landslides interpreted as being unrelated to road systems was 4 feet. The mean depth of all shallow seated landslides interpreted as being associated with road systems was also 4 feet. Due to the relative lack of debris flows and torrents, no effort was made to differentiate landslide depths among different shallow landslide types. The mean depth of 4 feet was assigned to all landslides not verified in the field.

The mean sediment delivery percentage assigned to shallow landslides determined to deliver sediment, but not field verified, is 63%. Of the 399 shallow-seated landslides mapped by MRC in this watershed analysis, 373 of the landslides delivered some amount of sediment (Table A-4).

Planning Watershed	Total Landslides	Landslides with Sediment Delivery	Landslides with No Sediment Delivery
Lower Elk	173	164	9
Upper Elk	226	209	17
sum	399	373	26
Percentage	100%	93%	7%

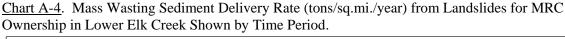
Table A-4. Total Shallow-Seated Landslides Mapped for each PWS in Elk Creek WAU.

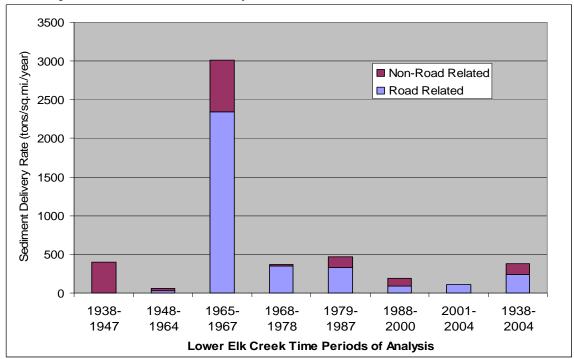
Sediment input to stream channels by mass wasting is quantified for seven time periods (1938-1947, 1948-1964, 1965-1967, 1968-1978, 1979-1987, 1988-2000, 2001-2004). The dates for each of the time periods are based on the date of aerial photographs used to interpret landslides (1947, 1964, 1967, 1978, 1987, 2000, and 2004) and field observations (2005). The available aerial photography did not correspond exactly to ten year time periods for mass wasting assessment, however the time periods and the aerial photographs analyzed approximate decadal intervals and bracket major disturbance events (e.g. intensive tractor logging in the 1965-1967 time period). These time periods allow for a general evaluation of the relative magnitude of sediment delivery rate estimates across the Elk Creek WAU.

A total of approximately 447,672 tons of mass wasting sediment delivery was estimated for the time period 1938-2004 in the Elk Creek WAU. This equates to approximately 305 tons/sq. mi./yr. Of the total estimated amount, 31% delivered from 1938-1947, 6% delivered from 1948-1964, 26% delivered from 1965-1967, 14% delivered from 1968-1978, 14% delivered from 1979-1987, 7% delivered from 1988-2000, and 2% delivered in the 2001-2004 time period (Table A-5).

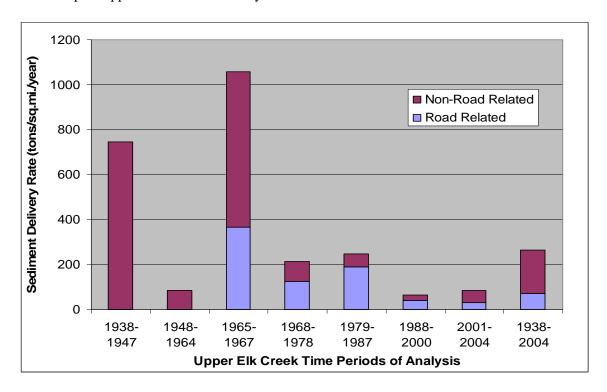
Total	137	185		472	,	. 194
Elk WAU	0	137,185	4,500	23,972	69,466	44,728
CE	0	106,591	0	20,161	15,689	29,608
CL	0	30,594	4,500	3,811	53,777	15,120
r w S	RR^a	NRR ^b	RR	NRR	RR	NRR
PWS	1938 - 1947		1948 – 1964		1965 – 1967	

<u>Table A-5.</u> Sediment Delivery (in tons) by Time Period for Elk Creek WAU^a.

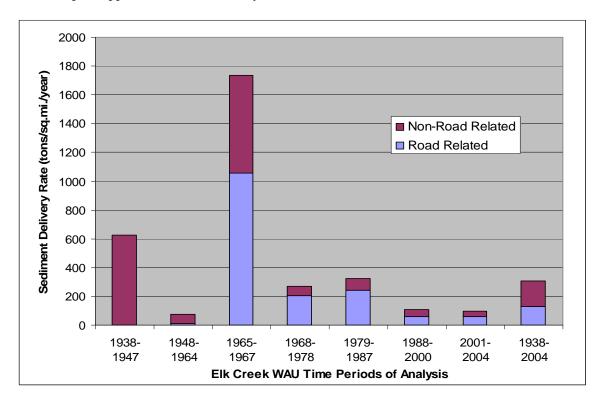

a – Road related (including roads, skid trails, and landings) b – Non-road related


Total	64.	864	64.	189	30.	482	8,2	86
Elk WAU	48,885	15,979	47,418	16,771	16,397	14,085	5,078	3,208
CE	19,833	13,695	24,585	7,186	7,503	4,623	1,755	3,178
CL	29,052	2,284	22,833	9,585	8,894	9,462	3,323	30
rws	RR	NRR	RR	NRR	RR	NRR	RR	NRR
PWS	1968 -	- 1978	1979 -	- 1987	1988 -	- 2000	2001-	-2004

<u>Table A-5 (continued).</u> Sediment Delivery (in tons) by Time Period for Elk Creek WAU^a.


Relatively large amounts of sediment delivered from 1938-1947, particularly in Upper Elk Creek, is the result of a few discrete relatively large debris slides observed on the 1947 photos. Relatively large amounts of sediment delivered from 1965-1967 is mainly attributed to intensive ground based yarding. Ground based yarding during this era of forest management included the practice of sidecasting excavated fill material on steep slopes adjacent to watercourses. Additionally, according to local rainfall data, the December 1964 storm event produced the wettest days on record at 80 precipitation stations on the northwest coast (Goodridge, 1997). Although the 1964 storm was most intensely focused in Humboldt County, a large portion of Mendocino County was subjected to a 100 year recurrence interval precipitation event. Numerous studies reveal there is a pronounced effect of pore water pressure changes on factor of safety for shallow-seated landslides (Sidle et al., 1985). It appears that the 1964 storm event triggered many landslides, not only where sidecast fills were constructed on steep slopes, but also along watercourses apart from any road building activity.

The sediment delivery estimates were normalized by time (years) and area (square miles) for the purposes of relative comparison between time intervals and planning watershed. The resulting sediment delivery rates in the Elk Creek WAU change dramatically over the time period investigated (Chart A-4).



<u>Chart A-5</u>. Mass Wasting Sediment Delivery Rate (tons/sq.mi./year) from Landslides for MRC Ownership in Upper Elk Creek Shown by Time Period.

<u>Chart A-6</u>. Mass Wasting Sediment Delivery Rate (tons/sq.mi./year) from Landslides for MRC Ownership in Upper Elk Creek Shown by Time Period.

Road associated mass wasting (including roads, skid trails, and landings) was found to have contributed 191,744 tons (131 tons/sq. mi./yr) of sediment over the 67 years analyzed in the Elk Creek WAU (Table A-6). This represents approximately 43% of the total mass wasting inputs for the Elk Creek WAU for 1938-2004. The road related sediment delivery rates for both Lower and Upper Elk Creek planning watersheds are quite different. A review of the aerial photo record reveals a majority of Lower Elk Creek had been intensively tractor yarded in the few years prior to the 1964 storm event. Upper Elk Creek had not been subjected to the same level of disturbance prior to the 1964 storm event, this is revealed in the difference in road related sediment rates for the 1965-1967 time period between Lower Elk Creek (2348 tons/sq. mi./yr) and Upper Elk Creek (366 tons/sq. mi./yr).

<u>Table A-6</u>. Road Associated Sediment Delivery (in tons) for Shallow-Seated Landslides for Elk Creek WAU by Planning Watershed.

	Road	Percent of Total
	Associated	Sediment Delivery
Planning	Mass Wasting	From Planning
Watershed	Sediment	Watershed
	Delivery (tons)	
Lower Elk Creek	122,379	63%
Upper Elk Creek	69,365	27%
Elk Creek WAU	191,744	43%

Lower Elk Creek has a slightly higher overall sediment delivery rate from mass wasting than Upper Elk Creek over the entire 67 year period (378 tons/sq.mi./yr. versus 266 tons/sq.mi./yr.). The larger sediment delivery rate may be due to generally steeper terrain, and a larger amount of land area disturbed by tractor logging prior to the 1964 storm event.

A categorical description of the land area interpreted to concentrate surface and/or subsurface flow to the point of failure for non-road related shallow-seated failures was conducted. Road related failures were excluded because of the many other variables that influence road failures (e.g. thickness of fill, construction techniques, concentrated road run-off, etc.). In this analysis, categories of contributing area included small areas (<0.5 acres), medium sized areas (0.5-3.0 acres) and large areas (>3.0 acres). Areas were determined by a combination of air photo and GIS analysis and indicate a majority of the sediment delivery is occurring from slides where the contributing area is between 0.5 and 3.0 acres in size (Table A-7).

<u>Table A-7</u>. Sediment Delivery from Landslides for MRC Ownership in Elk Creek Shown by Contributing Area.

Planning	Small Area	Medium Area	Large Area
Watershed	< 0.5 acres	0.5-3.0 acres	>3.0 acres
Lower Elk	16,479	31,396	23,011
Upper Elk	31,153	77,484	73,964
Elk Creek WAU	47,632	108,880	96,975

Intuitively, a majority of the sediment delivery is occurring from medium and large contributing areas where pore pressure increases in response to precipitation events would be most significant.

A categorical description of the slope aspect for all shallow-seated failures was conducted. Despite the other variables that influence road related failures, as mentioned above, road related failures were included in this analysis. In this analysis slope aspect is determined as an absolute azimuth in the GIS and then categorically described as NE (0°-89°), SE (90°-179°), SW (180°-269°), or NW (270°-359°). Results are presented below (Table A-8)

<u>Table A-8</u>. Sediment Delivery from Landslides for MRC Ownership in Elk Creek Shown by Hillslope Aspect.

Planning Watershed	NE	SE	SW	NW
Lower Elk	31,191	46,569	80,019	35,486
Upper Elk	31,822	131,097	68,659	22,829
Elk Creek WAU	63,013	177,666	148,678	58,315

A majority (73%) of the sediment delivery is occurring on slopes with a predominately south facing aspect. This may be attributed to the south to north direction that rain falls when storm events occur over in the area, resulting in increased pore water pressure increases on south facing slopes.

The distribution of shallow-seated landslides by soil type was analyzed to investigate the relationship between sediment delivery and soil type. The Mendocino County Soil Survey (Rittiman and Thorson, 2001) data includes a classification (USCS, Unified Soil Classification System) that describes the general properties of the soil and allows for a categorical description (Coarse, Fine, or Mixed) based on the distribution of grain size. The GIS was queried for the mapped soil type at the crown of the failure and the USCS soil type was categorically described as either coarse (predominately gravel and sand), fine (predominately silt or clay), or mixed (containing both coarse and fine grain sizes). Criteria for mapping soil types and classifying them based on the USCS are presented elsewhere. A portion of Lower Elk Creek was not made available by previous landowners when soils mapping was conducted, therefore the column "NA" is provided to summarize the amount of sediment that was not classified during this analysis. Results are presented below (Table A-9).

<u>Table A-9</u>. Sediment Delivery from Landslides for MRC Ownership in Elk Creek Shown by Soil Type.

Planning Watershed	Coarse	Fine	Mixed	NA
Lower Elk	89,464	17,752	4,265	81,784
Upper Elk	174,450	44,429	35,528	0
Elk Creek WAU	263,914	62,181	39,793	81,784

Results of this analysis reveal a majority of the sediment delivery is occurring from coarse grained soils, however, coarse grained soils also make up a majority of the soils mapped in the Elk Creek WAU.

Historically, research on the influence of timber harvesting on slope stability has focused on clear-cutting, or even-aged management, where hydrologic changes are most pronounced. The effect of partial harvest, or uneven-aged management, on slope stability is less well known. This data should not be misinterpreted as present forest conditions on MRC lands have resulted in

a majority of the ownership being in a state of partial harvest. The purpose of this analysis is to begin to generate a long term dataset on the relationship between forest conditions and landslide occurrence. Updates to this watershed analysis over time will build upon this dataset with the intention of identifying any emerging trends in the relationship between forest conditions and sediment delivery from partial harvesting.

The effect that forest stand conditions can have on sediment delivery from shallow-seated landsliding is investigated by attributing recent (2001-2004) non-road related failures with a forest inventory variable titled "structure class." Stands with similar forest attributes (dominant diameter, dominant vegetation, and canopy density) are described by their structure class as a tool for MRC to assess habitat conditions property wide. Generally, in this process vegetation strata are delineated based on an air photo interpretation of individual similar stands, subsequent field sampling generates empirical information on tree species, diameter, and canopy, and similar strata are grouped together to generate structure classes for habitat description purposes. The findings are summarized below (Table A-10).

<u>Table A-10</u>. Forest Stand Attributes for Recent Non-Road Related Landslides on MRC Ownership in Elk Creek.

Slide ID	Structure Class	Dominant Veg.	Dominant Diameter	Canopy Closure
702	21	Conifer	<16"	>60%
703	22	Conifer	16-24"	>60%
705	10	Conifer/Hardwood	>16"	40%-60%
706	21	Conifer	<16"	>60%
707	22	Conifer	16-24"	>60%
708	22	Conifer	16-24"	>60%
711	22	Conifer	16-24"	>60%

Sediment Input by Terrain Stability Unit

Total mass wasting sediment delivery for the Elk Creek WAU was separated into respective Terrain Stability Units. Sediment delivery statistics for each TSU are summarized in Table A-7.

Table A-/.	Total Sediment	Delivery (in tons) by TSU in the El	k Creek WAU (tons)

Sediment Delivery (tons)				TSU			
Sediment Derivery (tons)	1	2	3	4	5	6	8
Road Related	66,776	78,753	12,136	33,370	0	709	0
% road related	35%	41%	6%	17%	0%	0%	0%
Non-Road Related	50,786	49,935	118,191	34,809	0	2,207	0
% non-road related	20%	20%	46%	14%	0%	1%	0%
Total	117,562	128,688	130,327	68,179	0	2916	0
% of total delivery	26%	29%	29%	15%	0%	1%	0%
Acres	917	1654	541	9399	126	259	1181
% of WAU area	7%	12%	4%	67%	1%	2%	8%
Ratio- delivery %/area %	4.0	2.4	7.6	0.2	0.0	0.4	0.0

The TSU with the largest estimated sediment delivery is TSU 3, which is estimated to deliver 29% of the total sediment input for the Elk Creek WAU. However, a significant portion of this estimate is comprised of sediment from three non-road related sources in Upper Elk Creek in the 1938-1947 time period. These three failures reveal the influence that large mass wasting events can have on a landslide inventory, 16% of the sediment delivered during the entire 67 year period of analysis was delivered by these three slides.

Combining all high hazard units (TSU 1, 2, 3, and 6) would yield 86% of the estimated non-road related sediment input of approximately 24% of the MRC owned acreage. Combining the moderate and low hazard units (TSU 4, 5, and 8) would yield 14% of the estimated non-road related sediment input off the remaining 76% of the property. One measure of the intensity of mass wasting processes in a given TSU is the amount of sediment produced divided by the area in the TSU. The last row in Table A-7 expresses landslide intensity as the ratio of the percentage of total sediment delivered by the percentage of watershed area in the TSU. A ratio of 1.0 would indicate that the map unit is producing a proportion of the sediment delivery equal to the proportion of the map unit area within the WAU. Values of this ratio greater than 1.0 indicate high landslide rates in a relatively concentrated area. The TSUs with the largest ratios were units 1, 2, and 3, with ratios of 4.0, 2.4, and 7.6, respectively. The smallest ratios are found in units 4, 5, 6, and 8; 0.2, 0.0, 0.4, and 0.0, respectively. The ratios suggest that the delineation of the high hazard Terrain Stability Units has captured the majority of the estimated sediment delivery from mass wasting over the past 41 years in the Elk Creek WAU.

CONCLUSIONS

In forest environments of the California Coast Range, mass wasting is a common, natural occurrence. In the Elk Creek WAU this is due to steep slopes, the condition of weathered and intensely sheared and fractured marine sedimentary rocks, seismic activity, locally thick colluvial soils, a history of timber harvest practices, and the occurrence of high intensity rainfall events. Mass wasting events are episodic and many landslides may happen in a short time frame. Mass wasting features of variable age and stability are observed throughout the Elk Creek WAU. A majority of the landslides visited in the field during this assessment occurred on slopes greater than 70%. Seeps and springs were evident in the evacuated cavity at many sites. Particular caution should be exercised when conducting any type of forest management activity in areas with convergent or locally steep topography.

Mass wasting sediment input is estimated to be at least 305 tons/sq.mi./yr. over the 1938-2004 time period for the entire Elk Creek WAU. However, approximately 60% of the shallow-seated landslides inventoried in the Elk Creek WAU are road associated (includes roads, skid trails, and landings). Road associated mass wasting represented 43% of the estimated sediment delivery, or at least 131 tons/sq. mi./yr of sediment over the 67 years analyzed. Road construction is thus a significant factor in the cause of shallow-seated mass wasting events. Improved road construction practices combined with design upgrades of old roads can reduce anthropogenic sediment input rates and mass wasting hazards.

The steep streamside areas of TSU 1, 2, and 3 contribute the highest amount of the sediment per unit area in the watershed. In the moderate and low hazard units of TSU 4 and 5, a large amount of road associated landslides are occurring, suggesting the need to make improvements on roads within the Elk Creek WAU.

REFERENCES

California Department of Conservation, Division of Mines and Geology, 1997. Fault Rupture Hazard Zones in California, Special Publication 42, 47 p.

Cruden, D.M. and Varnes, D.J. 1996. Landslide types and processes. In: Landslides Investigation and Mitigation, Transportation Research Board, Washington DC, Special Report 247: 36-75.

Dietrich, W.E. and Montgomery, D.R. SHALSTAB; a digital terrain model for mapping shallow-landslide potential, NCASI Technical Report, February 1998, 29 pp.

Dietrich, W.E., Real de Asua, R., Coyle, J., Orr, B., and Trso, M. 1998. A validation study of the shallow slope stability model, SHALSTAB, in forested lands of Northern California. Stillwater Sciences Internal Report, Berkeley, CA.

Goodridge, J., 1997. California's rainfall records: 1862-1997. CD ROM. CD produced by USDA Forest Service, Pacific Southwest Research Station, Arcata, California.

Keaton, J.R. and DeGraff, J.V., 1996. Surface Observation and Geologic Mapping. In: Landslides Investigation and Mitigation, Transportation Research Board, Washington DC, Special Report 247: 178-230.

Manson, M.W., 1984. Geology and Geomorphic Features Related to Landsliding, Navarro (SE) Cold Spring 7.5-Minute Quad, DMG OFR 84-45.

Manson, M.W., 1984. Geology and Geomorphic Features Related to Landsliding, Mallo Pass 7.5-Minute Quad, DMG OFR 84-13.

Rittiman, C.A., and Thorson, T., 2001. Soil Survey of Mendocino County, California, Western Part. U.S. Department of Agriculture, Natural Resources Conservation Service, Posted web-site at http://www.ca.nrcs.usda.gov/mlra02/wmendo/eureka_qd.html

Selby, M.J. 1993. Hillslope materials and processes. Second Edition. Oxford University Press. Oxford.

Sidle, R.C., Pearce, A.J., and O'Loughlin, C.L., 1985. Hillslope Stability and Land Use. Water Resources Monograph 11, American Geophysical Union, 140 p.

Swanston, D.N., Lienkaemper, G.W., Mersereau, R.C., and Levno, A.B. 1988. Timber harvest and progressive deformation of slopes in southwestern Oregon. AEG Bulletin, 25(3):371-381.

Washington Forest Practice Board. 1995. Standard methodology for conducting watershed analysis. Version 4.0. WA-DNR Seattle, WA.

Wieczorek, G.F., 1996. Landslide Triggering mechanisms. In: Landslides Investigation and Mitigation, Transportation Research Board, Washington DC, Special Report 247: 76-90.

Elk Creek Mass Wasting Inventory Appendix A

Watershe	d:					Elk C	Creek								Shallo	w-se	ated la	ndslide	es						Dee	p-seate	d lands	slides			Mass Wasting Inventory Sheet Mendocino Redwood Company, LLC
	T&R	Air Photo	Air Photo	Landslide	TSU	Certainty		Size		Slide	Sed.	Dom.	Sed. Del.	Sed.	Sed.	Slope	,	Slope	Slide	Road	Contrib		Struc.	Toe	Body	Lat.	Main	DS	Comple		
ID#	Sec. #	year	frame	Type DS DF DT	400	DPQ	Length feet	Width	Depth	Vol. yd^3	Routing P I N	Aspect NE SE	Ratio 25 50 75	Delivery yd^3	Delivery	(field)	_	Form	Loc. HSIN	Assoc.	Area S M	Type L USCS	Class	Activity	Morph.	Scarps	Scarps	Veg.	ΥN	Obs.	Comments
				EF RS	123	DPQ	reet	reet	feet	ya^3	PIN	NE SE	100 (%)	yara	tons	(%)	NRO	CDP	HSIN	NI	S M	L USCS	1 to	123	123	123	123	1234	YN	YN	
1 CL	17			DS	3		200	250		7407.41	Р	NW	63	4667	6300		N	Р	S	N	L	С									DSL toe slopes
2 CL	20		2_118	DS	2		200	150		4444	<u> </u>	SE	63	2800	3780		N	C	S	N	S	С								.,	
3 CL 4 CL	20	1947 1947	2_118 2_119	DS DS	3		250 300	200		5556 8889	P P	SW	50 25	2778 2222	3750 3000	90		P	S	N N	M S	C F								Y	
5 CL	7	1947	2_119	DS	4		250	150		6944	P	SE	25	1736	2344	100		P	S	N	S	NA								Y	
6 CL	8	1947	2_119	DS	2		300			6667	Р	SE	63	4200	5670		N	С	N	N	М	NA									
7 CL 8 CE	22		2_120 8 87	DS DS	3		175 100			3889 2778	P	SW	50 75	1944 2083	2625 2813	85 85		C P	S	N N	L M	NA								Y	DSL toe slopes
9 CE	22		8 87	DS	1		75			556	P	SW	100	556	750	80		P	S	N	M	C								Y	DSL toe slopes
10 CE	27	1947	8_87	DS	1	D	150	75		1667	Р	NE	63	1050	1418		N	С	S	N	М	С									
11 CE	26			DS	3		150				<u> </u>	SW	63	1400 1111	1890	- 7	N	P	N	N	M	С									just below break in slope
12 CE 13 CL	22 15			DS DS	1		150 200				P	SW	50 50	2315	1500 3125	70		C	H S	N N	S	F								Y	indistinct in the field
14 CE	36			DS	3		300				P	SW	63	2100	2835	- 00	R	P	N	N	S	F									
15 CE	26		10_6	DS	4		150				Р	SW	63	1400	1890		R	Р	N	N	S	M									
16 CE 17 CE	26 19		10_7 10_21	DS DF	3		250 150			7407 1111	P	SE	63 63	4667 700	6300 945		N N	P	N H	N N	M S	М									
18 CE	19		10_21	DF	3		150				<u> </u>	SE	63	700	945		N	C	Н	N	M	M									
19 CE	19	1947	10_21	DF	4	D	75	50	4	556		SE	63	350	473		N	С	Н	N	S	M									
20 CE	19		10_21	DF	4		100			1481		SE	63	933	1260		N	С	Η:	N	S	M									
21 CE 22 CE	32		9_38 9_39	DS DS	3		150 100			1667 833	P	SW	63 75	1050 625	1418 844	80	N N	C	H S	N N	M	C						-		Y	
23 CE	30			DS	3	D	350				P	SE	50	12963	17500	75		Č	S	N	M	C								Y	earthflow morphology here
24 CE	30		9_39	DS	3	D	400				Р	SE	75	27778	37500	75		Р	S	N	L	С								Υ	DSL toe slopes
25 CE 26 CE	30		9_39 9_39	DS DS	3	D D	250 300			18519 8889	P P	SE	75 63	13889 5600	18750 7560	75	R R	P	S	N N	L M	С								Υ	DSL toe slopes
100 CL	17		17 103	DS	1		75			1667	P	SW	63	1050	1418		N	P	S	N	L	C									DSL toe slopes
101 CL	20	1964	17_103	DS	2	Р	100	50	3	556	ı	SW	25	139	188	73	3 N	С	Н	N	М	F								Υ	
102 CL	8		17_104	DS	1		200			6667	P	SE	50	3333	4500	85		С	S	R		NA								Υ	
103 CE 104 CL	27 15		6_103 6_104	DS DS	1		100			741 1481	P P	NE NE	63 63	467 933	630 1260		R R	P P	S	N N	M S	C									
105 CE	14		6_104	DS	2		150			1667	Ť	SW	63	1050	1418		N	P	N	N	S	M									earthflow morphology here
106 CL	15		6_105	DF	2	D	150				ı	SW	63	700	945		N	С	Н	N	S	С									800' long runout
107 CE	35 35		17_58	DS DS	3		175 200			2593 4444	<u> </u>	SE	63 63	1633 2800	2205		R N	C	Η:	N	M	F									
108 CE 109 CE	36		17_58 17_58	DS	3		100			1481	N	SE	03	2800	3780		N	C	H S	N N	S	M									
110 CE	36		17_58	DS	4		100			741	N	SW	0	0	0		N	C	S	N	S	M									
111 CE	24		17_60	DF	3		200				<u> </u>	SW	63	933	1260		N	C	Н	N	S	M									
112 CE 113 CE	24 25		17_60 17_60	DS DS	3		150 50			2222 370	N P	SW	63	233	315		N N	C	H S	S	М	M									
114 CE	32			DS	2		100				i	NW	63	933	1260		N	C	N	N	M	F									
115 CE	29	1964	4_84	DS	2		100				ı	SW	63	700	945		N	Р	S	N	М	С									
116 CE 117 CE	32 32		4_84 4_84	DF DF	4		100 150				P P	NE SE	63 63	700 1050	945 1418		N	P	S	N N	L	С									DSL toe slopes
118 CE	32		4_84	DF	1		100				÷	SW	63	467	630		N	C	S	N	M	F								1	DSL toe slopes DSL toe slopes
119 CE	32	1964	4_84	DF	1	D	100	50	4	741	ı	SE	63	467	630		N	С	S	N	М	F									DSL toe slopes
120 CE	32		4_84	DS	1		150	100			Р	SW	63	1400	1890		N	C P	S	N	M	F									DSL toe slopes
121 CE 122 CE	32 29		4_85 4_85	DS DS	2		100	100 75		1481 1111	+	SE	63 63	933 700	1260 945		N	P	N N	N N	M	F				-	-				earthflow morphology here
123 CE	31		4_85	DF	3		100	50		741	i	SW	63	467	630		N	C	Н	N	S	С				ļ	ļ		l	1	
200 CL	7	1967	02_06	DS	2	D	150			2222	I	NE	63	1400	1890		N	С	Н	N	L	NA									
201 CL 202 CL	8		02_06 02_04	DS DS	1		150 100			3333 741	P P	NW NE	63 63	2100 467	2835 630		N N	C P	S N	N S	L	NA NA	1			-	-		-	1	
202 CL	8	1967	02_04	DS	1		150	200			P	SW	63	2800	3780		N	C	S	R	1	NA									
204 CL	8	1967	02_04	DS	1	D	200	150	4	4444	P	SW	63	2800	3780		N	С	S	R		NA									
205 CL	7	1967	02_04	DS	1		150				P P	NE	63	1400	1890	٠,	N	С	S	N	L	NA	-			-	-		-	V	
206 CL 207 CL	5	1967 1967	02_04 02_04	DS DS	4		50 100			370 741	<u> </u>	SW	100 63	370 467	500 630	75	5 N N	C	S	R	1	NA NA				-	-			Y	
208 CL	6		02_04	DS	2		50			370	<u> </u>	NW	63	233	315		N	C	S	S	L	NA								L	
209 CL	6	1967	02_04	DS	4		150				Ţ	NW	63	1400	1890		N	С	S	S		NA									
210 CL 211 CL	5	1967 1967	02_04 02_04	DS DS	2		150 100			2222 1481	N	NW SW	63	933	1260		N N	P P	N S	S	1	NA NA	1			-	-		-	1	
211 CL	6	1967	02_04	DS	4		50			370	P	NE	63	233	315		N	P	S	S	1	NA									
213 CE	22	1967	03_06	DS	1	D	75	40	4	444	P	SE	25	111	150	72	2 N	P	S	R		С								Υ	
214 CL	22	1967	03_06	DS	1	D	75	100	5	1389	Р	SW	75	1042	1406	80	N	С	S	R		С								Υ	

Watersh	ed:						Elk C	Creek								Shallo	w-sea	ited la	ndslide	s						Dee	p-seate	ed lands	slides			Mass Wasting Inventory Sheet Mendocino Redwood Company, LLC
Unique PWS	S T	&R A	ir Photo	Air Photo	Landslide	TSU	Certainty		Size		Slide	Sed.	Dom.	Sed. Del.	Sed.	Sed.	Slope	Age	Slope	Slide	Road	Contrib.	. Soil	Struc.	Toe	Body	Lat.	Main	DS	Comple	x Field	mendoemo nedwood company, EEO
ID#	Se	c. #	year	frame	Туре			Length	Width	Depth	Vol.		Aspect	Ratio	Delivery	Delivery	(field)		Form	Loc.	Assoc.	Area	Type	Class	Activity	Morph.	Scarps	Scarps	Veg.		Obs.	Comments
	#	-			DS DF DT EF RS	123		feet	feet	feet	yd^3	PIN	NE SE	25 50 75 100 (%)	yd^3	tons	(%)	NRO	CDP	HSIN	RSL	S M L	USCS	1 to	123	123	123	123	1234	YN	ΥN	
215 CE	+	22	1967	03 06	DS	1		50	50	4	370	Р	SE	63	233	315		N	Р	S	R		С	2.4	43	73	43	43			Υ	Unable to locate in the field
216 CE		22	1967	03_06	DS	1	Р	50	75		694	Р	SW	75	521	703		N	С	S	R		c								Y	
217 CE		22	1967	03_06	DS	1		60					SW	50	167				С	S	R		С								Υ	
218 CE 219 CE		22 22	1967 1967	03_06 03_06	DS DS	1 2		100 50			1111 370		NW SW	50 63	556 233		90	N	C P	S	S R		С								Y	Seepage in skid trail cutslope
220 CE		27	1967	03_06	DS		Q	150					NW	63	1400			N	C	Н	N	М	С									Possible DSL instability
221 CE		21	1967	03_06	DS	2	2 D	150					NE	63	1400			N	С	S	R		С									,
222 CL		21	1967	03_06	DS		Q	100					SW	63	467			N	l O	Н	S		F									
223 CL 224 CL		21	1967 1967	03_06 03_06	DS DS	2	P D	50 100					SE SE	63 0	233			N N	P C	S H	R R		C									
225 CL		21	1967	03_06	DS		P	100					NW	63	467			N	P	S	R		C									
226 CL		21	1967	03_06	DS	4	I P	100					NW	63	467			N	С	S	S		С									
227 CL		21	1967	03_06	DF	3		50			370		SW	63	233			N	С	S	S		С									
228 CL 229 CL		21	1967 1967	03_06 03_06	DS DF	3	P P	100 50			741 370		SW	63 63	467 233			N N	00	S	S		C									
230 CL		21	1967	03_06	DS	4		200		4			NE	63	4667			N	P	S	N	М	С									
231 CL		20	1967	03_06	DS	4	I P	50	100		741	Р	NE	63	467	630		N	Р	S	S		С									
232 CL		17	1967	03_06	DS	2	2 D	125		4			NE	75	2083		85		С	S	R		С	-	ļ	ļ			ļ	ļ	Υ	
233 CL 234 CL		16 21	1967 1967	03_06 03_06	DS DS	1		100			1481 741		SE NW	63 63	933 467			N N	P P	N S	S R		C								1	
235 CL		21	1967	03_06	DS		P	50			1111		NW	63	700			N	C	S	S		F									
236 CL		21	1967	03_06	DS	4	I P	50	50	4	370	ı	NW	63	233	315		N	С	S	S		F									
237 CL		21	1967	03_06	DS		Q	250		4	7407		NW	63	4667			N	P	S	R		С									
238 CL 239 CL		21	1967 1967	03_06 03_06	DS DS	1		100 50			741 370		NE SW	63	467			N N	C	S	S		C									
240 CL		16	1967	03_06	DS	1		150					SW	63	2100			N	С	S	S		С									
241 CL		16	1967	03_06	DS	1		150			2222		SW	63	1400			N	С	S	S		С									
242 CL		15	1967	03_06	DS	1		100		5			SW	100	2778				Р	S	R		С								Υ	
243 CL 244 CL		15 15	1967 1967	03_06 03_06	DS DS	1		100			741 593		NW SW	63 50	467 296			N	C P	S	R R		C								V	
245 CL		15	1967	03_06	DS	1		100					SW	50	556				P	S	R		F								Y	
246 CL		15	1967	03_04	DS	4	l D	150	50				SW	63	700	945		N	С	Н	N	S	С									
247 CL		15	1967	03_04	DS		2 P	100					SW	63	1867			N	Р	H	R		С									
248 CL 249 CL		15 10	1967 1967	03_04 03_04	DS DS	2		100 50			1111 185		NW SW	63 63	700 117			N N	P C	N S	N S	М	M									
250 CL		10	1967	03_04	DS	4		50					SW	63	117			N	P	N	S		M									
251 CL		16	1967	03_04	DS	1		75					SE	75	625				С	S	R		С								Υ	
252 CL		15	1967	03_04	DS	2		150 100		4			SE SE	63	700			N	C P	N	S		С									
253 CL 254 CL	+	16 8	1967 1967	03_04 03_04	DS DS	1		100		4			NE	63 63	933			N	C	S	S R		NA.									
255 CL		15	1967	03_04	DS	4	l D	100					NW	63	467			N	C	Н	R		M									
256 CL		9	1967	03_04	DS	2	2 D	75				ı	SW	63	1050			N	С	S	S		NA									
257 CL		8	1967	03_04	DS	2		75					NW	63	700			N	P	S	S		NA									
258 CL 259 CL	+	9	1967 1967	03_04 03_04	DS DS	2	P P	100 50		4			NW SW	63 63	467 233			N N	C P	S	S N	L	NA NA		-	-					1	
260 CE		34	1967	04_07	DS	4		200		4			NE	63	1867	2520	ļ	N	C	Н	S	_	C								1	
261 CE		35	1967	04_07	DS	1		100					SW	63	467			N	С	S	N	M	С									
262 CE 263 CE		26 26	1967 1967	04_07 04_07	DS DS	1		200 50		4	4444 370		SW	63 63	2800 233			N N	P C	S H	N N	S M	C M									toe of DSL
264 CE		23	1967	04_07	DS	4		100			741		SW	63	467			N	C	Н	N	L	F									toe or DSL
265 CE		26	1967	04_05	DS	1	Q	50	100	4	741	Р	SW	63	467	630		N	Р	S	N	L	C									
266 CE		23	1967	04_05	DS		Р	100	50				SW	63	467			N	С	S	N	M	С									
267 CE 268 CE		23	1967 1967	04_05 04_05	DS DS	1		100 50					SW NE	63	467 0		-	N R	00	S	N N	L	С		-	-					1	
269 CE		22	1967	04_05	DS	1		50					SW	25	208			N	P	S	N		C								Υ	
270 CE		22	1967	04_05	DS	1	Р	100	40	3	444	Р	SW	50	222	300	70	N	С	S	N		C								Y	<u> </u>
271 CL		15	1967	04_05	DS	1		100					SW	63	467			N	С	S	S		С									Describle DOL (see the first transfer
272 CE 273 CE		14	1967 1967	04_05 04_05	DS DS	2		100 150					SW	63	1050		-	N	C	H S	N N	M	M C			-					1	Possible DSL (earthflow) instability
274 CE		23	1967	04_05	DS	2		50					SE	75	208				C	S	N	S	С					1			Υ	
275 CE		23	1967	04_05	DS	2	P	50	50	4	370	- 1	SW	63	233	315		N	Р	S	N	М	С								Υ	Unable to locate in the field
276 CE		23	1967	04_05	DS	3		100					SW	63	467			N	С	N	N	M	С	<u> </u>							\perp	
277 CE 278 CE		23	1967 1967	04_05 04_05	DS DS	3	Q B D	50 100			741 741		SW	63 63	467 467			N N	P	N H	N N	L S	C		-	-					1	
279 CE		36	1967		DS	3		50					SE	63	233			N	C	H	N		M								1	
														,									1								1	

Watershe	d:					Elk C	reek								Shalle	ow-sea	ted la	ndslide	es					Deep-seated landslides Struc. Toe Body Lat. Main DS C							Mass Wasting Inventory Sheet Mendocino Redwood Company, LLC
Unique PWS	T&R	Air Photo	Air Photo	Landslide	TSU	Certainty		Size		Slide	Sed.	Dom.	Sed. Del.	Sed.	Sed.	Slope	Age	Slope	Slide	Road	Contrib.	. Soil	Struc.	Toe	Body	Lat.	Main	DS	Complex	Field	wendocino Redwood Company, LLC
ID#	Sec. #	year	frame	Туре	100	Containty	Length		Depth	Vol.	Routing	Aspect	Ratio	Delivery	Delivery	(field)	rigo	Form	Loc.	Assoc.	Area	Type	Class	Activity		Scarps	Scarps	Veg.	Compics	Obs.	Comments
				DS DF DT	123	DPQ	feet	feet	feet	yd^3	PIN	NE SE	25 50 75	yd^3	tons	(%)	NRO	CDP	HSIN	RSL	S M L	USCS	1 to	123	123	123	123	1234	YN	ΥN	
				EF RS	456							NW SW	100 (%)							ΝI			24	4 5	45	45	45				
280 CE	31		05_06	DS	2	Q	50		4	370		NE	63				N	P	N	N	S	М									
281 CE 282 CE	31 30		05_06 05_06	DS DS	4		100		4	741 741	-	NE SW	63				N	С	Н	N	M	M								Υ	Unable to locate in the field
282 CE 283 CE	24		05_06	DS	3	B P	75		4	833		NE	63 0				N N	P	H	R N	М	C									
284 CE	24		05_04	DS	3		150		4	2222		SE	0				N	C	H	N	M	C									
285 CE	24		05_04	DS	2		50		4	556		SW	63				N	С	S	N	M	C									
286 CE	25		05_04	DS	3		75		4	833		SE	63				N	С	S	N	M	С									
287 CE	19		05_04	DS	3		50		4	185		SW	63				N	С	Н	N	M	С									
288 CE 289 CE	19		05_04	DS	2		150		4	2222		NW	63				N	P C	S		_	F M									Describe DOL (seeds flees) in stability
289 CE 290 CE	19 20		06_03 06_03	DS DS	2		100 50		4	741 185		SE	63 63				N N	C	H N	N R	S	F									Possible DSL (earthflow) instability
291 CE	19		06 03	DS	2		100		4	1111		NE	63				N	P	N	S		F									
292 CE	20		06_03	DS	3		100		4	741		SW	63				N	C	N	S		F									
293 CE	20		06_03	DS	4		50		4	370		SW	0				N	С	Н	N	S	С									
294 CE	29		06_03	DS	3		50		4	185		SW	0				N	С	Н	N	S	С									
295 CE 296 CE	29 29		06_03 06_05	DS DS	4		100		4	741 741	P	SE	63 63				N N	P	S	N R	М	F C					-	-			
296 CE 297 CE	29		06_05	DS	2		100		4	1481	<u> </u>	SW	63				N	P	S	I		C					1			-	
298 CE	33		06_05	DS	2		100		4	741		SW	63				N	P	S	N	L	F									
299 CE	33	1967	06_05	DS	2	Q	50	50	4	370	- 1	SW	63	233	315		N	Р	S	N	Ĺ	F									
300 CE	32	1967	06_05	DS	2	. D	50	75	4	556	Р	SE	63	350	473		N	Р	S	R		F									
301 CE	32		06_05	DS	2		100		4	741	Р	SE	63				N	P	S	R		С									
302 CE 303 CE	32 32		06_05 06_05	DS DS	2	D P	250 50		4	5556 185		NW SW	63 63				N N	P	S	R N	L	F									
303 CE 304 CE	32		06_05	DS	1	P	150		4	2222		SE	63				N	P	H S	N	L	F									
305 CE	32		06 05	DS	1		100		4	741		SW	63				N	P	S	N	L	C									
306 CE	32		06_05	DS	2		100		4	741	Ī	SW	63				N	Р	Н	N	M	M									
307 CE	32		06_05	DS	1	1 1	200		4	4444		SE	63				N	Р	S	N	S	М									
308 CE	6		06_05	DS	2		100		4	1111	1	SW	63				N	Р	N	N	S	M									
400 CL 401 CL	18 18		2_12 2_12	DS DS	1	_	100 75		4	741 278	P N	SE NE	63 0				N N	C D	S N	R R		NA NA									
401 CL	18		2_12	DS	4		100		4	741	IN I	SE	63				N		S	S		NA					-				
403 CL	18		2_12	DS	1		75		4	556		SE	63				N	C	S	S		NA									
404 CL	18		2_12	DS	1	D	75		4	556		SE	63				N	Р	S	S		NA									
405 CL	18		2_12	DS	4		100		4	741	- 1	SE	63				N	Р	S	S		NA									
406 CL	18		2_12	DS	1		100		4	1481	P	SE	63				N	P	S	S		NA									
407 CL 408 CL	18 18		2_12	DS DS	1		50 75		4	370 389		SW NE	63 63				N N	C	S	R R		NA NA									
400 CL	18		2_12	DS	1		75		4	833		NE	63				N	C	S	N	L	NA									
410 CL	18		2_12	DS	1		50		4	370		NE	63				N	Č	S	N	Ĺ	NA									
411 CL	17		2_12	DS	1		25		4	93		NE	63				N	Р	S	R		С									
412 CL	17		2_12	DS	3		50		4	370		NE	63				N	P	S	R		С									
413 CL 414 CL	17 20		2_12 2_12	DF	4		75 80		4	556 711	P P	SW	63 50				N	C	H	S		С					-	-		V	
414 CL 415 CL	20		2_12	DS DT	2		200		4	4444		NE	63				N	C	N	S		C		1	!		+	1		I	500' torrent track
416 CE	27		3_8	DS	1	P	50		4	370	i	SW	63				N	C	S	R		C					1				
417 CE	27	1978	3_8	DF	2	D	75	50	4	556	- 1	SW	63	350	473		N	С	N	R		С									
418 CE	27		3_8	DS	1	D	100		4	741	!	SW	63				N	Р	S	R		С									
419 CE 420 CE	27 27		3_8	DS DS	1	Q	100 50		4	1111 185	I P	SE NW	63 63				R	C	N	S R		C					1	-			
420 CE 421 CE	22		3_8	DS	1	D	70		4	519		SW	25				N N	C	S	R		C					1	1		Υ	
422 CE	27		3_10	DS	1		100		4	1111		SW	63				N	c	S	R		С					1			ľ	
423 CE	27	1978	3_10	DS	2	. D	25	25	4	93	- 1	SE	63	58	79		N	С	N	S		C			L		L	L		L	
424 CE	21		3_10	DS	2		75		4	556		NE	63				N	Р	N	S		С									
425 CE	21		3_10	DS	2		100		4	741		NE	0				N		N	S		С					1	1			
426 CE 427 CE	21 21		3_10 3_10	DS DS	2		75 50		4	556 370		NE NE	0 63				N N	D P	N S	S		С	-			-	1	1		-	
427 CE 428 CL	15		3_10	DS	1		100		4	741	P	NE	63				N	C	S	N	М	С		1	!		+	1			
429 CL	15		3_12	DS	2		50		4	1111		NW	50					P	N	R		С					1			Υ	
430 CL	15	1978	3_12	DS	2	D	100	75	4	1111	- 1	NW	50	556	750	85	N	D	N	R		С								Υ	
431 CL	15		3_12	DS	2		50		4	185		SW	63				N	С	S	S		С									
432 CL	15		3_12	DS	3		100		4	741	<u> </u>	SE	63				N	P P	S	S		C					1			-	
433 CL 434 CL	15 15		3_12 3_12	DS DS	3		100		4	1481 741		NW NW	63 0				N N	C	N N	S		C	-				1	1	-	-	
434 CL 435 CL	15		3_12	DS	2		100		4	741	IN I	NW	63				N		N	R		C		1	!		+	1			Possible gully erosion
		.0.0				_ ~	.00	- 55					- 55					<u> </u>					1		-		1	1	1		

Watershe	d:					Elk C	reek								Shalle	ow-sea	ted la	ndslide	s						Deej	o-seate	d lands	slides			Mass Wasting Inventory Sheet
Unique PWS	T&R	Air Photo	Air Photo	Landslide	TSU	Certainty		Size		Slide	Sed.	Dom.	Sed. Del.	Sed.	Sed.	Slope	Age	Slope	Slide	Road	Contrib.	Soil	Struc.	Toe	Body	Lat.	Main	DS	Complex	Field	Mendocino Redwood Company, LLC
ID#	Sec. #	vear	frame	Type	130	Certainty	Lenath		Depth	Vol.	Routing	Aspect	Ratio	Delivery	Delivery	(field)	Age	Form	Loc.	Assoc.	Area	Type	Class	Activity	Morph.	Scarps	Scarps	Veg.	Complex	Obs.	Comments
		1		DS DF DT	123	DPQ	feet	feet	feet	yd^3	PIN	NE SE	25 50 75	yd^3	tons	(%)	NRO	CDP	HSIN	RSL	S M L	USCS	1 to	123	123	123	123	1234	ΥN	ΥN	
				EF RS	456							NW SW	100 (%)							NI			24	4 5	45	4 5	45				
436 CL	15	1978	3_12	DS	2	D	25	25	4	93	- 1	SE	63	58	79		N	С	N	S		С									
437 CL	15		3_12	DS	2		150		4	3333	- 1	SE	63				N	Р	N	S		С									
438 CL	10		3_12	DS	4		100		4	2222		SW	63				N	Р	Н	R		NA									
439 CL	9		3_12	DS	2	D	300		4	6667	ı	SW	63				N	С	Н	S		NA									
440 CL	9		3_12	DS	2		100		4	741		SE	63				N	С	Н	S		NA									
441 CL 442 CL	9		3_12	DS	2		75 100		4	556		SW	63				N	P	S	R		NA									
442 CL 443 CL	16 16		3_12 3_12	DS DS	1		100		4	741 741		NE	63 63				N N	C	S	N R	М	C									
444 CL	16		3_12	DS	1	_	100		4	741		SE	63				N	C	S	R		С									
445 CL	16		3 12	DS	1	_	150		4	1667	P	SE	63				N	Č	S	R		Č									
446 CE	35		4_6	DS	2		100		4	741	- 1	NE	63				N	С	Н	S		F									
447 CE	35	1978	4_6	DT	2	P	150	100	4	2222	Р	NE	63	1400	1890		N	С	Н	S		С									500' torrent track
448 CE	35		4_6	DS	2		50		4	370		NE	63				N	С	S	S		С									
449 CE	26		4_6	DS	1		50		4	556		NE	63				N	С	S	N		С									
450 CE	26		4_6	DS	3		50		4	370		NE	0		_		R	P	N	N	М	C									
451 CE 452 CE	26 23		4_6 4 6	DS DS	3		75 75		4	833 833		NE SW	63 63				N N	C	N S	S R		C							-		Toe of DSL
452 CE	23		4_6	DS	2		150		4	1667		SW	63				N	C	S	N	М	F						1	1	 	TOE OF DOL
454 CE	25		4_6	DS	2		25		4	93		SW	63				N	P	S	N		C									†
455 CE	24		4_8	DS	3		100		4	2222		SW	63				N	P	Н	R		C									cutslope failure, possible DSL
456 CE	24	1978	4_8	DS	4	Р	75	75	2	417		SE	25	104	141	80	N	Р	S	R		С								Υ	
457 CE	23	1978	4_8	DS	2	2 D	100		3	556		SW	75	417			N	Р	S	R		M								Υ	
458 CE	23		4_8	DF	3		75		2	167		SE	100					С	Н	N		M								Υ	open grassland
459 CE	23		4_8	DF	4		75		3	208		SE	100				N	С	Н	N		М								Υ	open grassland
460 CE	23		4_8	DF	4		100		4	741		SE	75					С	Н	N	S	M								Y	open grassland
461 CE 462 CE	23 24		4_8 4_8	DF DS	4		100		4	741 741		NW SW	25 75				N N	P C	S N	R R		C M								Y	250' runout
462 CE	6		5_4	DS	2		150		4	1111		NE	63				R	C	N	S		M								ı	anomolous vegetation
464 CE	6		5 4	DS	4		75		3	375		SW	0					P	N	R		M								Υ	anomolous vegetation
465 CE	6		5_4	DS	2	D	50		4	444		NW	50		300			Р	S	S		М								Υ	
466 CE	6		5_4	DS	2	D	50	35	3	194	Р	SW	75					Р	S	S		M								Υ	
467 CE	6		5_4	DS	2		50		3	250		SE	100					Р	S	s		M								Υ	cutslope failure
468 CE	30		5_5	DS	4		200		4	2963		SE	50					Р	S	N	M	С								Υ	
469 CE	30		5_5	DT	4		100		4	1111		SW	63				N	С	Н	R		С									750' torrent track
470 CE 471 CE	30 19		5_5 5_7	DS DS	2		50 100		4	370 1111		SW	63 63				N N	C	H N	R		С									Disrupted Ground
471 CE	19		5 7	DS	2		200		4	2963		NW	63				N	P	S	N	S	F									Disrupted Ground
473 CE	25		5 7	DF	3		150		4	1667	Ė	SE	63				N	C	Н	N		C									
474 CE	20		5 7	DS	2		50		4	370	i	SW	63				N	P	S	S		F									
475 CE	19	1978	5_7	DS	4	P	75	50	4	556	- 1	SW	63	350	473		N	Р	S	S		М									
476 CE	24		5_7	DF	2		150		3	1250		NE	50					С	S	S		С								Υ	Assoc. w/ DSL#863
477 CE	19		5_7	DS	3		100		4	1111		SW	0				N	Р	N	R		F									
478 CE	20		5_7	DS	2		100		4	741	- !	SW	63				R	Р	S	N		M									
479 CE 480 CE	20 33		5_7 6 4	DS DS	2		75 100		4	556 1481	 	SW	63 63				R N	P	S	N R	М	F		-						-	cutslope failure
481 CE	33		6 4	DS	4		100	50	4	741	N	SW	0		1260		N	P	N	N	ı	C		<u> </u>						-	cusiope idilule
482 CE	33		6_4	DS	2	D D	75		4	556		SW	63				N	P	S	N	Ĺ	F									
483 CE	32		6_4	DS	4		100		4	741	P	SE	63				N	P	S	N	L	F									
484 CL	6	1978 f	ield obs	DS	2	D	100	50	4	741	- 1	SE	75	556	750	90	0	Р	S	S		NA								Υ	
485 CE	24			DS	2		50		5	463		SE	25				0	С	S	R		С								Y	Assoc. w/ DSL#863
486 CE	30			DF	2		200		4	889		SE	100				0	С	S	N	L	С								Υ	Toe failure off #24
487 CE	30			DS	2		150		5	1111		SE	75					С	S	N	L	С								Y	Toe failure off #24
488 CE 489 CE	6		ield obs ield obs	DS DS	2	_	50 30		3	222 50		NW NW	75 75					P P	S	S		M M						1		Y	
490 CE	22			DS	1		50		3	167		SE	75					P	S	R		C								۱ ۷	
500 CL	20		M16 19	DS	1		75		4	667		NW	25				N	P	S	S		C						<u> </u>	1	Ý	+
501 CL	20		M16_19	DS	1		50		4	296		SW	75					C	S	S		C								Y	
502 CL	20		M16_19	DS	1		50		4	370		NW	63				N	Р	S	S		С						1			
503 CL	20		M16_19	DS	1		50		4	556		NW	63				N	Р	S	S		С									
504 CL	20		M16_19	DS	1		50		4	185		NW	63				N	Р	S	S		С									
505 CL	18		M16_21	DS	1	1 1	50		4	370		SW	63				N	P	S	R		NA						1		<u> </u>	
506 CL 507 CL	17 7		M16_21	DS DS	1		75 75		4	556		SW	63 63				N	C P	S	R R		C NA						1			Cutalana failura
507 CL 508 CL	7		M16_21 M16_21	DS	2		75 50		4	833 370		SW	63				N N	P	S	N N		NA NA						1	-	-	Cutslope failure
509 CL	7		M16_21	DF	3		100		4	741		NE	63				N		Н	N		NA			\vdash					1	+
	<u> </u>	.00.				_ ~		. 00	- 1				- 55	.57			<u> </u>							1					1		

Watersh	ned:	:					Elk C	Creek								Shalle	ow-sea	ited la	ndslide	s						Dee	p-seate	d lands	lides			Mass Wasting Inventory Sheet Mendocino Redwood Company, LLC
Unique PW	S T	& R	Air Photo	Air Photo	Landslide	TSU	Certainty	1	Size		Slide	Sed.	Dom.	Sed. Del.	Sed.	Sed.	Slope	Age	Slope	Slide	Road	Contrib.	Soil	Struc.	Toe	Body	Lat.	Main	DS	Comple	x Field	wiendocino Redwood Company, EEC
ID#	s	iec. #	year	frame	Type		Í	Length	Width	Depth	Vol.	Routing		Ratio	Delivery	Delivery	(field)		Form	Loc.	Assoc.	Area	Type	Class	Activity	Morph.	Scarps	Scarps	Veg.		Obs.	Comments
	4				DS DF DT	123	DPQ	feet	feet	feet	yd^3	PIN	NE SE	25 50 75	yd^3	tons	(%)	NRC	CDP	HSIN	RSL	S M L	USCS	1 to	123	123	123	123	1234	YN	ΥN	
540 01	4	-	4007	140.04	EF RS	456		400		_	000		NW SW	100 (%)			7.5	L	P		NI		N1.0	24	4 5	45	45	4 5			.,	
510 CL 511 CL		7	1987 1987	M16_21 M16_21	DS DS	3		100				N N	SW	0	0		75		C	N N	R		NA NA								Y	
512 CL		8	1987	M16_21	DS	1		50				P	SE	63	117			N	P	S	N	L	NA								i –	
513 CL		7	1987	M16_21	DS	1		100				Р	SE	50	1111				Р	S	R		NA								Υ	toe failure of DSL#807
514 CL		7	1987	M16_21	DS	1		100				P	NE	75	833				С	S	N	L	NA								Υ	
515 CL		7	1987 1987	M16_21 M16_23	DS DS	4		100 75				P	NE NE	75 63	1042 350			R	P	S	N S	L	NA NA								Υ	
516 CL 517 CL		6		M16_23	DS	1		50				÷	NW	63	350			R	C	S N	S		NA									
518 CL		6		M16_23	DS	2		75				i	SW	63	700			N	P	S	S		NA	ļ								
519 CL		5	1987	M16_23	DS	2		50	50	4	370	ı	SW	63	233	315	i	N	Р	S	S		NA									
520 CL		20	1987	M17_22	DT	4		200				ı	SE	63	2333			N	Р	N	N	М	F									enlargement of 415, 500' torrent track
521 CL		21	1987	M17_22	DS	2		40				P I	SW	50	333				P	N	S		C								Υ	
522 CL 523 CL		21	1987 1987		DS DS	2		100 50				+	SW	63 63	1867 467	2520 630		N N	P	N N	S		C								-	
524 CE		21	1987	M17 22	DS	2		75				÷	NW	63	700			N	P	S	N	М	C									
525 CL		16	1987	M17_24	DS	1	D	75	75	4	833		NW	63	525	709)	R	С	S	R		С									
526 CL		16	1987	M17_24	DS	1		100					SW	75	1667				Р	S	N	М	F								Υ	bedrock controlled trib junction
527 CL		16	1987	M17_24	DS	1		75				Р	SW	100	417				P P	S	S		C								Υ	
528 CL 529 CL		9	1987 1987	M17_24 M17_26	DS DS	2	P	75 50				-	SW	63 63	700 467	945		N N	P	S	S		NA NA				-		-		1	+
530 CL		9	1987		DS	2	D	75				1	NW	63	875			N	P	S	S		NA					-	ļ		1	+
531 CL		9	1987		DS	2	2 D	75	75		833		SW	63	525			N	P	S	S		NA								L	<u> </u>
532 CL		9	1987	M17_26	DF	4		100				N	SE	0	C	_		N	С	N	N	S	NA									possible earthflow at this site
533 CL		8	1987	M17_26	DS	2		100				<u> </u>	SW	63	1167			N	С	N	S		NA									cutslope failure at watercourse crossing
534 CL 535 CE		8 27	1987 1987	M17_26 M18 23	DS DS	1		100				-	SE	25 63	185 700			N N	C	H S	R		NA C								Υ	possible gully orosion
536 CE		21	1987	M18 23	DS	2		100				P	NW	63	467			N	P	S	S		C									possible gully erosion
537 CE		27	1987	M18_23	DS	4		75				i	NE	63	525			N	P	S	R		M									
538 CE		27	1987	M18_23	DS	1		75				ı	SW	63	525			N	Р	S	S		С									
539 CE		22	1987	M18_25	DS	1		60				P	SW	75	267				Р	S	R		С								Υ	
540 CE 541 CE		22	1987 1987	M18_25 M18_25	DS DS	1		65 120				P P	SW	50 75	289 1000				P	S	R		C								Y	
541 CL		15	1987		DS	4		100				P	SW	25	139				P	S	R		F	-							Y	+
543 CL		15	1987	M18_25	DS	4		100				P	SE	75	625				D	S	R		C								Y	
544 CL		15	1987	M18_25	DS	2	D	75				Р	SW	63	350			N	Р	S	S		С									
545 CL		15	1987	M18_25	DS	2		25				ı	NW	63	117			N	Р	S	S		С									
546 CL 547 CL		15	1987 1987	M18_25	DS	2		75 50				<u> </u>	SW	63 63	700			N	P	S	S		F									
547 CL	+	14 15	1987	M18_25 M18_25	DS DS	2		50				+	NW	75	233			N	C	S	S		M								Υ	-
549 CL		14	1987	M18_25	DS	2		50				i	SW	63	233			N	P	S	S		M								i –	
550 CL		10	1987	M18_27	DF	4		100				ı	SE	63	233			N	С	Ι	N	М	M									possible gully erosion
551 CL		10	1987	M18_27	DF	4		75					SE	63	175			R	С	Н	N	S	С									open grassland
552 CE 553 CE		27	1987	M19_24	DS	1		100				P P	NE	63	700			N	P C	S	S		C									autologo foiluse
553 CE		22	1987 1987	M19_24 M19_24	DS DS	1		60				P	SW	63 50	467 311			N	C	S	R R		C								Y	cutslope failure
555 CE		22	1987	M19_24	DS	1		50				P	SE	63	233			N	C	S	N	L	С								Ť.	
556 CE		23	1987	M19_26	DS	2	D	75	50	4	556	Р	SW	50	278	375	80	N	Р	S	R		F								Υ	
557 CE		22	1987	M19_26	DS	1		100				<u> </u>	SW	63	467			N	P	N	R		С									toe of DSL
558 CL 559 CE		15 1	1987 1987	M19_28 M20_24	DS DS	2		125 50				- -	NW NE	63 63	875 233			N N	P	S N	S R	-	M C	-	-	-	-		-		1	
560 CE		1	1987	M20_24	DS	2		50				÷	NE	63	233			N	P	N	S	 	C	-	 	-	-		l		1	+
561 CE		36	1987	M20_24	DS	2	Q	50	50	4	370	i	SW	63	233	315	5	N	Р	N	S		С									
562 CE		36	1987	M20_24	DS	2	Q	50				- 1	SE	63	233	315	5	N	Р	N	S		М									
563 CE		2	1987	M20_24	DS	3		50				_!_	NE	63	233			N	Р	S	S	ļ	С	ļ	ļ						1	
564 CE		2 36	1987 1987	M20_24 M20_24	DS DS	1		50 100				1	SE	63 63	350 700			N N	P	S	S		C				-				1	possible DSL upslope of here
566 CE		35	1987	M20_24	DS	2		50				<u> </u>	NE	63	350			N	P	N	S		С									hossing nor absorbe of field
567 CE		26	1987	M20_26	DS	4		100				i	NE	63	467			N	C	S	S		C								1	
568 CE		26	1987	M20_26	DS	2	P	100				I	SE	63	933	1260)	N	Р	S	S		С									
569 CE		26	1987	M20_26	DS	3		75					SE	63	525			N	Р	S	R		С									
570 CE		26 23	1987 1987	M20_26 M20_28	DS DS	2		50 50				- -	SE SE	63 63	233 117			N N	P P	N N	S	-	C	-	-	-	-		-		1	
571 CE		23	1987	M20_28	DS	2		75				<u> </u>	SE	63	350			N	C	N	S		C								+	+
573 CE		23	1987	M20_28	DS	2	2 D	50				i	SW	63	233			N	P	S	N	L	F								1	+
574 CE		23		M20_28		3		75				1	SW	100	139				С	Н	N	S	М								Υ	possible earthflow in here

Watersh	ed:	:					Elk (Creek								Shallo	w-sea	ted la	ndslide	s						Dee	p-seate	ed lands	slides			Mass Wasting Inventory Sheet Mendocino Redwood Company, LLC
Unique PW	ST	& R /	Air Photo	Air Photo	Landslide	TSU	Certainty	1	Size		Slide	Sed.	Dom.	Sed. Del.	Sed.	Sed.	Slope	Age	Slope	Slide	Road	Contrib.	Soil	Struc.	Toe	Body	Lat.	Main	DS	Comple	x Field	mendocino Redwood Company, ELC
ID#	s	iec.#	year	frame	Туре			Length	Width	Depth	Vol.	Routing		Ratio	Delivery	Delivery	(field)		Form	Loc.	Assoc.	Area	Type	Class	Activity	Morph.	Scarps	Scarps	Veg.		Obs.	Comments
	4				DS DF D			feet	feet	feet	yd^3	PIN	NE SE	25 50 75	yd^3	tons	(%)	NRO	CDP	HSIN	RSL	S M L	USCS	1 to	123	123	123	123	1234	YN	ΥN	
=== 05	+				EF RS	456				.			NW SW	100 (%)		=00	400			_	NI		-	24	4 5	4 5	45	4 5				
575 CE 576 CE		23 31	1987 1987	M20_28 M21 21	DS DF		2 D 3 P	75 100			556 741	-	NW SE	75 63	417 467	563 630	100	N N	P C	S H	N S	S	F								Y	lateral scarp of DSL
577 CE		36	1987	M21_21	DF		3 D	150				+	NE	63	1400			N	P	N N	R		M									
578 CE		30	1987	M21 23	DS		1 P	150			1667	P	SE	63	1050			N	C	S	N	М	M					1			1	
579 CE		30	1987	M21_23	DS		2 D	100					SW	63	700			N	P	S	R		M									
580 CE		30	1987	M21_23	DS		2 P	50					NE	63	233			N	С	S	N	М	M									cutslope failure
581 CE		36	1987	M21_23	DS		1 D	100					NE	75	1389		75		С	S	L		M								Υ	
582 CE		25	1987	M21_23	DS		1 D	75					NE	63	350			N	С	S	R		С									
583 CE 584 CE		24	1987 1987	M21_25 M21_25	DS DF		3 D 4 D	150 150					NE SE	63	350			N N	P C	S N	R N	М	C M									open grassland
585 CE		19	1987		DF		4 D 3 D	100					SE	63	233			N	C	N	N		M					1			-	open grassianu
586 CE		19	1987		DF		4 D	150			556		SW	63	350			N	C	N	N		M									
587 CE		19		M21_25	DF		4 D	100			370		SW	63	233			N	Č	N	N		M									
588 CE		19	1987		DF		4 D	150					SW	63	350			N	С	N	N	S	M									
589 CE	1	23		field obs	DS		2 D	150					SW	50	1667			0	Р	S	S		F								Υ	
590 CL	\perp	8		field obs	DS		4 D	50					SE	100	259			0	С	N	S		NA					1			Υ	
591 CL 592 CE		9 23		field obs field obs	DS DS		1 D 2 D	75 50					SW	25 100	111 222			0	P P	S	S N	S	C	-				1	-		1	
592 CE		24		M21_25	DS		4 D	75					SE	63	525			N	C	N	R	٥	C						 			
594 CL	+	20		field obs	DS		1 D	75					NW	75	521	703		0	P	S	S		č								Υ	
595 CE		22		field obs	DS		1 D	50	75				NE	75	521				С	S	N	М	C								Υ	
600 CL		17	2000		DS		4 Q	150			1111		NE	63	700	945		N	С	S	R		С									
601 CL		17	2000	7B_11	DS		4 Q	100			1111		NE	0	С			N	С	N	N	М	С									
602 CL		7	2000	7B_11	DS		3 D	150			1667	P	SW	63	1050			R	P	N	R		NA									
603 CL 604 CL		7 5	2000	7B_11 7B_13	DS DS		1 D 2 P	120 75					SW	100 63	1111 350			N N	C	S	R N	М	NA NA								Y	
605 CL		5	2000	7B_13	DS		4 D	150					SE	63	1750			N	P	S	R	IVI	NA									
606 CL		16	2000	8B 15	DS		1 P	75			1111		NE	63	700			R	C	S	N	L	C									
607 CL	T	9	2000	8B_17	DT		2 D	250		4	3704	Р	SW	63	2333	3150		N	С	Н	N	М	NA									4000' torrent track
608 CL		9	2000	8B_17	DS		2 D	50					SW	63	233			N	Р	S	R		NA									
609 CE		22	2000	9B_12	DS		1 D	100					SW	75	625				С	S	N	М	С								Υ	
610 CE 611 CE		21	2000		DS DS		2 D	75 85					SE	63	175 283			N N	P C	S	S N		С								V	
612 CE		22	2000	9B_12 9B_12	DS		1 D 1 D	100					NE SW	75 63	467			N	C	S	R	М	C								T	
613 CL	+	15	2000	9B_14	DS		1 P	100					NE	63	467			N	P	S	N	М	C									
614 CL	T	15	2000	9B_14	DS		2 D	75					SE	63	350			N	P	S	S		C									
615 CL		15	2000	9B_14	DS	2	2 D	50	50	4	370	- 1	SE	63	233	315		N	Р	S	N	M	С									
616 CE		26	2000	10B_9	DS		1 D	75					SW	63	350			N	Р	S	R		С									
617 CE		23	2000	10B_9	DT		4 D	150					NE	63	1050			N	С	Н	S		С									300' torrent track
618 CE 619 CE		23	2000	10B_11 11B_11	DF DS		3 D 1 D	100 150				P	SW NE	100 50	370 556			N N	C	H S	N R	S	M C								Y	grassland toe failure off DSL#643
620 CE		36 36	2000		DS		1 D	100				P	NE	75	1250		75		C	S	S		C								Y	toe failure off DSL#643
621 CE		24	2000		DS		2 D	150				-	NE	63	1050		73	N	P	S	N	L	С	ļ	-	-		1			-	CO LAMBO ON DOLFFOTO
622 CE		29	2000	12C_6	DS		2 D	150				i	SW	63	1050			N	C	Н	N	L	F						l -			
623 CE		20	2000	12C_8	DS	4	4 D	50	50	4	370	N	SW	0	C	0		N	Р	N	N	М	М									grassland
624 CL		8	2000	field obs	DS		2 D	100				I	SW	75	556			N	Р	S	R		NA								Υ	
625 CE	\perp	22	2000	field obs	DS		2 D	50			167	P	SE	50	83			R	С	S	S	-	F	-			-	1	1	-	Y	
626 CL 627 CL	+	8 15		field obs field obs	DS DS		4 D 2 D	50 75					SW	25 25	56 156		70 70	R R	C P	N S	R R		NA	ļ				1	1		Y	
627 CL		15		field obs	DS		2 D	35					SW	100	78		60	R	P	N	N	L	C						-	-	Y	toe failure off DSL#818
629 CL	+	15		field obs	DS		1 D	100					SW	75	625			R	C	S	N	S	С						t		Y	THE PERSON NAMED IN COLUMN 1
630 CL		15	2000	field obs	DS		1 D	200	100	6	4444	Р	SW	50	2222	3000	110	R	С	S	N	M	C								Υ	toe failure off DSL#818
631 CL		15		field obs	DS		1 D	100					SW	75	625				Р	S	R		С								Υ	R/R grade failure
632 CE		23		field obs	DS		4 D	100					SE	25	278				С	N	R		М								Υ	likely DSL instability at this site
633 CE		23		field obs	DS		4 D 1 D	100					SE	50	370				С	N	R		M						-	-	Y	
634 CE 635 CE		31		field obs field obs	DS DS		1 D 1 D	20 50					NE SW	100 25	278				P C	S	N R	М	M				-	1	-	-	Y	
636 CE		6		field obs	DS		2 D	40					NW	50	167			R	P	S	S		M						 		Y	
637 CE		22		field obs	DS		2 D	30					NW	75	533				P	S	R		F								Y	toe failure off DSL#867
700 CL	╧	7	2004	16_24	DS		1 D	100	100	5	1852	Р	SW	75	1389	1875		N	С	N	R		NA								Υ	
701 CL	T	15	2004		DS		2 P	100			741		SW	63	467	630		N	Р	S	S		С									
702 CE		25	2004		DS		3 Q	100					NE	63	467			N	P	Н	N		С	21				1			1	
703 CE 704 CE		27	2004 2004	18_86	DS DS		2 D 2 Q	50 100			370 1481	1	NE SE	63 63	233 933			N N	P	S	N R	М	C	22				-			-	
704 CE		27 26	2004		DS		2 Q 1 P	75				P	SW	63	350			N	C	S	N	S	C	10				1	 		1	
			2004	.0_00		-	· · · ·		. 50		550	•	·		500	.70							-		1	1		1			1	

Waters	hed	:					Elk	Creel	<							Shallo	ow-sea	ted la	ndslide	s						Dee	p-seate	ed lands	slides			Mass Wasting Inventory Sheet
Unique P\	ue T	гор	Air Photo	Air Photo	Landslid	ie TSI	J Certain		Size	_	Slide	Sed.	Dom.	Sed. Del.	Sed.	Sed.	Slope	Λαο	Slope	Slide	Road	Contrib	. Soil	Struc.	Toe	Body	Lat.	Main	DS	Comple	x Field	Mendocino Redwood Company, LLC
ID#		Sec. #	vear	frame	Type	150	J Certain	Lengt		Depth	Vol.		Aspect	Ratio	Delivery	Delivery	(field)	Age	Form	Loc.	Assoc.	Area	Type	Class	Activity	Morph.	Scarps	Scarps	Veg.	Comple	Obs.	Comments
10.11	Ť	JOO. 11	you	iidiiio	DS DF D	T 12	3 DPQ			feet	yd^3	PIN	NE SE	25 50 75	yd^3	tons	(%)	NRO		HSIN	R S L	S M L	USCS	1 to	123	123	123	123	1234	ΥN	Y N	GGIIIIIGIIG
	\dashv				EF RS			1001	1001	1000	,,,,,		NW SW	100 (%)	,,,,,	torio	(70)		00.		NI	0 101 2	- 0000	24	4.5	45	4.5	45	120		1	
706 C	= †	23	2004	19 40	DS		2 P	10	0 50) 4	741	-	SW	50	370	500	90	N	Р	S	N	S	F	21							Υ	
707 C		22	2004		DS		1 D	5				P	NE	63	233			N	C	S	N	L	C	22							· ·	
708 C		29	2004		DS		2 P	7:				Ť	SW	63	700			N	C	S	N	M	C	22								
709 C		7		field obs	DF		2 D	7				P	SE	75	467	630		N	C	S	R		NA								Υ	several large trees delivered
710 C		15		field obs	DS		2 D	5					SW	75	139				Р	Ī	R		М								Υ	toe failure off DSL#818
711 C		15		field obs	DS		1 D	3					SW	100	22				Р	- 1	N	L	С	22							Υ	toe failure off DSL#818
712 C		23	2004	field obs	DS		4 D	3	0 20				SW	100	44	60			С	N	R		M								Υ	on head of DSL#830
713 C	=	23		field obs	DS		4 D	5					SW	100	222	300			С	N	R		M								Υ	on head of DSL#830
714 C	≣	22	2004	field obs	DS		2 D	3) 4	133	-	SW	75	100	135			Р	S	R		F								Υ	
800 C				7 M16_21	RS		D	80				Р													2	3	2	: 3	4	N		DSL's mapped from '87 and '00 photos
801 C	-		1987	M16_21	RS		Р	70	0 700)		Р													3	3	3	4	4	N		
802 C	_		1987	M16_21	RS		D	70	0 400)		Р													2	2	2	. 2	2 4	N		
803 C	-		1987	M16_21	RS		D	80	0 600)		Р													1	2	2	4	4	N		
804 C	-		1987	7 M16_21	RS		P	80	0 600)		P													3	3	3	3	3 4	N		
805 C			1987		RS		P	70				Р													3		-			N		
806 C			1987		RS		D	80				Р													2					N		
807 C			1987		RS		D	50				Р													3					N		
808 C			1987		RS		Q	60				Р													4					N		
809 C			1987				Q	80				Р													4					N		
810 C			1987				P	70				Р													4		3		4	N		
811 C				M17_24			D	150				Р													2				3 4	N		
812 C				M17_24			P	80)		Ρ													4	4	4	4		N		
813 C	-		1987	M17_24	RS		D	100	0 400)		Р													2	2	4	. 3	4	N		
814 C			1987				P	90				Ρ													2	3	4			Y	Υ	
815 C			1987				P	80				_													3	2	3			N		
816 C			1987				P	10				Р													4					N		
817 C			1987				P	130				Р													3					N	Υ	
818 C			1987				D	70				_													2		3			Y	Υ	
819 C			1987				D	150				Ρ													3	3	3	3	3 4	N		
820 C			1987				D	220)		Р													2	2	3	3	3 4	N	Υ	
821 C			1987				P	150				Р													3	2	3	4	4	N	Υ	
822 C			1987				P	200				Ρ													2	2	2	3	3 4	N	Υ	
823 C			1987		RS		D		0 1500)		Р													3	2	3	3	3 4	N	Υ	
824 C	-		1987	M18_27	RS		P	90	0 400)		I													3	3	4	. 3	4	N		
825 C			1987				Q	60				Ρ													3	3	4	,		N		
826 C			1987		RS		Q	60)		Р													3	4	4	3		N		
827 C			1987				P	120				P													3	_		-		Y		
828 C			1987				P	180				Р													3	_		-		Y		
829 C			1987				D	200				Ρ													3		_			N	Υ	
830 C			1987				P	200				P													4					Y		
831 C			1987				Р	70				Ρ													4	_				N		
832 C			1987				P	140				Р													4					N		
833 C			1987				D	200				Р													4					N	Υ	
834 C			1987				P	150				Р													4					N		
835 C			1987				P	40				P													3					N		
836 C			1987				Q	60				1													4		3			N	1	
837 C			1987				P	140				P											1	1	4	_	4			N	1	
838 C			1987				Q	100				Р													3		4			N		
839 C			1987				P	130				Р													4	-	3	,		N	1	
840 C			1987				P	70				P											1	1	4	_	_			N	1	
841 C	₽		1987				P	80				P											1	1	4					N	1	
842 C			1987				D	70				Р													4					N		
843 C			1987				Р	110				P													3	_				N	1	
844 C			2000		RS		D	250				Р													3	_				N	Υ	
845 C			2000		RS		P	100				P											1	1	3					N	1	
846 C			2000		RS		Q	60				I					ļ								4					N		
847 C			2000		RS		D	150				P											1	1	3					N	1	
848 C			2000		RS		P	120				P											1	1	4			_		N	1	
849 C			2000		RS		P	120				Р											1	1	3	-				N		
850 C			2000		EF		D	280				Р											1	1	2					Υ	Υ	
851 C			2000		RS		P	100				Р											1	1	3					Y	l	
852 C			2000		RS		Q	100				Р											1	1	4	•				N	Υ	
853 C			1987				D	45				Р											1	1	2	_				N		
854 C			2000		RS		P	350				Р											1	1	3					N	Υ	
855 C	=		2000	10B_9	RS		P	120	0 2000)		Р													3	2	3	3	4	N	1	
	_							_	_			_								_		_			_	_	_	_			_	

Wat	ershe	d:					Elk (Creek								Shallo	w-sea	ted lar	ndslide	s						Dee	p-seate	d lands	lides			Mass Wasting Inventory Sheet Mendocino Redwood Company, LLC
Uniqu	PWS	T&R	Air Photo	Air Photo	Landslide	TSU	Certainty	У	Size		Slide	Sed.	Dom.	Sed. Del.	Sed.	Sed.	Slope	Age	Slope	Slide	Road	Contrib.	. Soil	Struc.	Toe	Body	Lat.	Main	DS	Complex	Field	
ID#		Sec. #	year	frame	Type			Length	Width	Depth	Vol.	Routing	Aspect	Ratio	Delivery	Delivery	(field)		Form	Loc.	Assoc.	Area	Type	Class	Activity	Morph.	Scarps	Scarps	Veg.		Obs.	Comments
					DS DF DT	123	DPQ	feet	feet	feet	yd^3	PIN	NE SE	25 50 75	yd^3	tons	(%)	NRO	CDP	HSIN	RSL	S M L	USCS	1 to	123	123	123	123	1234	ΥN	YN	
					EF RS	456							NW SW	100 (%)							NI			24	4 5	45	4 5	45				
85	CE		2000	9B_13	RS		Q	450	500			Р													3	3	3	3	4	N		
	CE		2000	11B_9	RS		Р	900	600			Р													3	3	4	3	4	N		
	CE		2000	12C_7	RS		D	1000	500			Р													3	3	3	3	4	N		
85	CE		2000	13B_5	RS		D	1300	550			Р													4	. 3	4	3	4	N		
	CL		2000	7B_13	RS		D	1800	1500			Р													3	2	4	3	4	N	Υ	
	CL		1987	M17_26	EF		D	700	500			Р													4	. 3	4	4	4	N	Υ	
	CE			M19_26	EF		D		3000			Р													3	3	4	4	3	Υ	Υ	
	CE		1987	M21_25	EF		D	1500	1000			Р													2	2	3	2	2	Υ	Υ	
	CE		2000	12C_7	EF		D	900	600			Р													3	2	3	2	2	Υ	Υ	
	CE		2000	11B_9	EF		Р	800	1700			Р													4	. 2	4	4	2	Υ	Υ	
	CE		2000	13B_5	EF		Р	1500	1300			Р													3	2	3	2	2	Υ	Υ	
86	CE		1987	M19_26	RS		D	1100	600			Р													2	3	3	2	4	N	Υ	

/ - - / - - - - - -

Elk Creek Watershed Analysis Unit

Map A-1 Mass Wasting Inventory

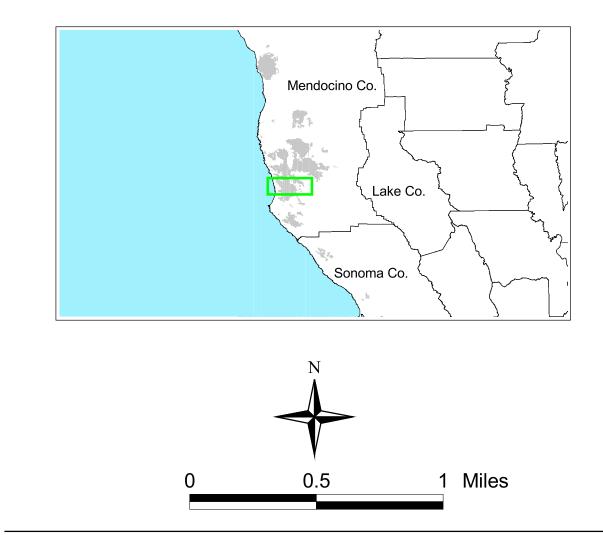
This map presents the location of mass wasting features identified on the MRC land in the Elk Creek watershed. The mass wasting features were developed from an interpretation of aerial photographs from the 1960's-2000 with field observation taken in 2003. All shallow-seated landslides are identified as a point plotted on the map at the interpreted head scarp of the failure. Deep-seated landslides are represented as a polygon representing the interpreted perimeter of the landslide feature. Physical and geomorphic characteristics of the landslides are categorized in a database in the mass wasting section of the Elk Creek watershed analysis.

Deep-Seated Landslides

Shallow-Seated Landslides

- < 500 cubic yards
- 500 5000 cubic yards
- > 5000 cubic yards

Class 1 Watercourse

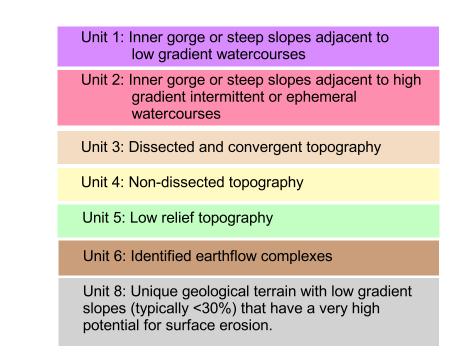

Class 2 Watercourse

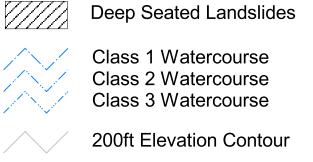
Class 3 Watercourse

200ft Elevation Contour

Planning Watershed Boundary Elk Creek Watershed Boundary

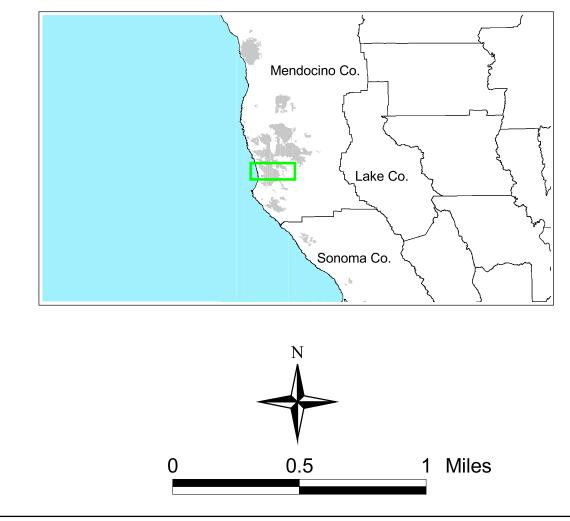
MRC Ownership Boundary


Copyright 2007 Mendocino Redwood Company, L.L.C.


-----1 - - - - 1

Elk Creek Watershed Analysis Unit

Map A-2 Terrain Stability Units


This map presents an interpretation of the terrain stability units (TSUs) delineated for the Elk WAU. The TSUs characterize the landscape by similiar geomorphic attributes, shallow-seated landslide potential, and sediment delivery potential. The TSU designations for the Elk WAU are only meant to be general characterizations of similiar geomorphic and terrain characteristics related to shallow seated landslides. Deep-seated landslides are also shown on this map. The deep-seated landslides have been included to provide land managers with supplemental information to guide evaluation of harvest planning and subsequent needs for geologic review. The landscape and geomorphic setting in the Elk WAU is more complex than generalized TSUs delineated for this evaluation. The TSUs are only meant to be a starting point for guaging the need for site specific field assessments. Field observations will over-ride unit boundaries of this map.

Planning Watershed Boundary Elk Creek Watershed Boundary

Copyright 2007 Mendocino Redwood Company, L.L.C.