Section A MASS WASTING

INTRODUCTION

This section summarizes the methods and results of a mass wasting assessment conducted on the Mendocino Redwood Company, LLC (MRC) ownership in the Noyo River watershed, the watershed analysis unit (WAU). This assessment is part of a Level II Watershed Analysis initiated by MRC and utilizes watershed analysis modified methodology adapted from procedures outlined in the Standard Methodology for Conducting Watershed Analysis manual (Version 3.0, Washington Forest Practices Board).

This section was originally developed and completed in December, 2000. In February, 2003 this section was updated. The update consisted of modification of the titles and map for what are now called terrain stability units (TSU). These units were previously titled mass wasting map units (MWMU).

The principle objectives of this assessment are to:

- 1) Identify the types of mass wasting processes active in the basin.
- 2) Identify the link between mass wasting and management related activities.
- 3) Identify where the mass wasting processes are concentrated.
- 4) Partition the ownership into zones of relative mass wasting potential (Terrain stability units) based on the likelihood of future mass wasting and sediment delivery to stream channels.

Additionally, the role of mass wasting sediment input to watercourses is examined. This information combined with the results of the surface erosion module will be used to construct a rapid sediment budget input summary for the Noyo WAU, contained in the Sediment Input Summary section of this watershed analysis.

The products of this report are a landslide inventory map (Map A-1), a terrain stability unit (TSU) map (Map A-2) and a mass wasting inventory database (Table A-1) for the WAU. The basis for these products are aerial photograph interpretation of 2 sets of aerial photographs, dated 1978 and 1996, field observations during the summer of 1998 and interpretation of SHALSTAB data. This level of observation is limited because the stochastic nature of mass wasting processes is difficult to capture using only 2 sets of aerial photographs. Furthermore the analysis is done without the use of historic aerial photographs (pre-1970s). Therefore the analysis presented must be interpreted with a measure of caution given the limited extent of the observations.

Nonetheless, the assembled information will enable forest-land managers to make better forest management operation decisions to reduce management created mass wasting. The mass wasting inventory will provide the information necessary to understand the spatial distribution,

A-1

2004

causal mechanisms, relative size, and timing of mass wasting processes active in the basin with reasonable confidence.

Use of SHALSTAB by Mendocino Redwood Company for the Noyo WAU

SHALSTAB, a coupled steady state runoff and infinite-slope stability model, is used by MRC as one tool to demonstrate the relative potential for shallow-landslide hazard across the MRC ownership. A detailed description of the model is available in Dietrich and Montgomery (1998). In the watershed analysis, mass wasting hazard is expanded beyond SHALSTAB. Areas of mass wasting and sediment delivery hazards are mapped using field and aerial photograph interpretation techniques. However, SHALSTAB output was used to assist in this interpretation of the landscape and Terrain stability units.

Landslides Types and Processes in the Noyo WAU

The terminology used to describe landslides in this report closely follows the definitions of Cruden and Varnes (1996). This terminology is based on 2 nouns, the first describing the material that the landslide is composed of and the second describing the type of movement. Landslides identified in the Noyo WAU were described by the following names: debris slides, debris torrents, debris flows, rock slides, and earth flows. These names are described in Cruden and Varnes (1996) with the exception of our use of debris torrent and debris flow.

Debris slides, debris flows and debris torrents are shallow seated landslides with soil thickness typically small compared to slope length or the length of the landslide. The material composition of debris slides, flows or torrents is considered soil with a significant proportion of coarse material; 20 to 80 percent (or more) of the particles are larger than 2 mm. Shallow seated slides move quickly downslope and commonly break apart during failure. Shallow seated slides commonly occur in converging topography where colluvial soil accumulates and subsurface drainage concentrates. Susceptibility of a slope to failure by shallow-landslides is affected by slope steepness, saturation of soil, soil strength (friction angle and cohesion), hydrostatic pressures and root strength. Due to the shallow depth and fact that debris slides, flows or torrents involve the soil mantle, these are landslide types that can be significantly influenced by forest practices.

Debris slides are landslides composed of coarse earth materials. Downslope movement of the landslide mass occurs dominantly on a surface of rupture or on relatively thin zone of intense shear strain. The displaced mass can slide beyond the toe of the surface of rupture and over the ground surface of the slope below the landslide. Typically debris slides fail with a translational mode of failure, along a planar or undulating surface of rupture. Upon reaching a watercourse debris slides do not continue down the watercourse.

Debris flows and debris torrents are landslides composed of coarse earth materials characterized by movement as a mobile slurry of soil, rock, vegetation and water that can travel long distances from its point of initiation. Debris flows or debris torrents form when landslide material essentially liquefies concurrently with, or immediately after the initial failure. The difference between debris flows and debris torrents is that as a debris torrent moves downslope the mass or

A-2

volume of material increases, sometimes by several orders of magnitude. A debris flow would travel downslope as a liquefied mass but not increase in volume or mass. Debris torrents are more destructive due to the increase in mass as they travel downslope. Debris torrents and debris flows typically initiate in confined, steep first- or second-order tributaries. Debris torrents and debris flows typically move down confined mountain channels, but debris flows can also flow across and deposit on planar or divergent topography, where a debris torrent typically will not.

Rock slides are deep-seated landslides with movement involving a relatively intact mass of rock and overlying earth materials. The failure plane is below the colluvial layer and involves the underlying bedrock. Rock slides can be very large exceeding tens (or sometimes hundreds) of acres. Modes of rock sliding are either rotational or translational. Rotational slides typically move along a face of rupture that is curved and concave. Translational slides typically move along a planar or undulating surface of rupture. Rock slides can occur in response to seismic shaking, adverse geologic structure, or channel incision. Climatic changes, ranging from major (glacial-interglacial transitions), to intermediate (runs of several wet years), to short-term (extreme precipitation) can also trigger rock slides. The stream itself can be the cause of chronic movement, if it periodically excavates the tow of a large slide mass.

Earth flows are landslides composed of earth material, in which 80% or more of the particles are smaller than 2 mm and movement is characterized as a viscous flow. Earth flows are typically relatively slow moving failures commonly composed of clay rich materials or weathered claybearing rocks. Movement is spatially continuous and occurs on shear surfaces within the slide mass that can be short-lived, closely spaced, and usually not preserved. The lower boundary of a flow may be a surface along which appreciable differential movement has taken place or a thick zone of distributed shear. Earth flows occur on moderate to gentle slopes and exhibit high moisture or ground water conditions.

Sediment Delivery from Deep-Seated Landslides

Sediment delivery to watercourses from deep-seated landslides (landslides typically ≥ 10 feet thick) can occur by several processes. Such processes can include sheet wash and erosion, shallow-or deep-seated movement of a portion of the landslide, or movement of the entire deep-seated landslide deposit.

The ground surface of a deep-seated landslide deposit, like any other hillside surface is subject to erosional processes such as rain drop impact, sheet wash (overland flow), and gully/rill erosion. Under these conditions the sediment delivery is, for all intents and purposes, the same as adjacent hillside slopes not underlain by landslide deposits. The earth materials within the landslide are disturbed and can be arguably somewhat weaker; however once a soil has developed the fact that the slope in question is underlain by a deep-seated landslide would make little difference regarding sediment delivery generated by erosion processes that act at the ground surface. Of course fresh unprotected surfaces that develop in response to recent or active movement could become a source of sediment until the bare surface becomes covered with leaf litter, re-vegetated, or soils developed on the exposed surfaces.

Clearly movement of a portion or all of a deep-seated landslide can result in delivery of sediment to a watercourse. However, movement would need to be on slopes immediate adjacent to or in close proximity to a watercourse and of sufficient magnitude to result in enough displacement of the toe of the slide for delivery to occur. A deep-seated slide that toes out on a slope far from a creek or moves only a short distance downslope will generally deliver little, if anything to a watercourse. Also movement would need to be of sufficient magnitude to actually push the toe of the slide into the watercourse or result in over steepening of the toe to make it unstable enough to initiate failures at the toe and resulting sediment delivery.

Generally ground cracking at the head of a large deep-seated landslide does not equate to immediate sediment delivery at the toe of the landslide. Movement of large deep-seated slides creates some void spaces within the slide mass. Though movement can be clearly indicated by the ground cracks, many times the toe may not respond or show indications of movement until some of the void space is "closed up". This would be particularly true in the case of very large deep-seated landslides that exhibit ground cracks that are only a few inches to a couple of feet wide. Compared to the entire length of the slide the amount of movement implied by the ground crack could be very small. This combined with the closing up or "bulking up" of the slide, would not generate much movement, if any, at the toe of the slide. Significant movement, represented by large wide ground cracks, would need to occur to result in significant movement and sediment delivery at the toe of the slide.

It is very import not to confuse normal stream bank erosion at the toe of a slide as an indicator of movement of that slide. Before making such a connection the slide surface should be carefully explored for evidence of significant movement, such as wide ground cracks.

It is also important to realize that many times only a portion of a deep-seated slide may become reactivated, though the portion could be quite variable in size. Thus, though a slide may have a large reactivation does not necessarily mean that the entire slide mass is involved in the current episode of movement.

A large active slide over time could and can, deliver large volumes of sediment. Delivery generally occurs in a conveyer-belt like process with movement delivering earth materials to the creek bank or into the creek. These materials are then removed by fluvial processes resulting in increased sediment in the channel. Actual delivery can occur by over steepening of the toe of the slide and subsequent failure into the creek or the slide pushing out into the creek. Sediment delivery could also occur in a catastrophic manner. In such a situation large portions of slide essentially fail and move into the watercourse "instantaneously". These types of deep-seated failures are relatively rare and usually occur in response to unusual storm events or seismic ground shaking.

METHODS

Landslide Inventory

The mass wasting assessment relies on a inventory of mass wasting features through the use of aerial photographs and field observations. John Coyle (John Coyle and Associates, Inc.) mapped shallow and deep-seated landslides in the Noyo WAU for Louisiana-Pacific Corporation using two sets of aerial photographs from 1978 (1:15,840) and 1996 (1:12,000). The exception to this is the MRC property in the Upper Noyo Planning Watershed where only aerial photograph interpretation was performed using photographs from 1996. The landslide mapping was originally done as part of a validation study on SHALSTAB (Dietrich et. al., 1998), the shallow-seated landslide slope stability model currently used by MRC. The objective of the SHALSTAB validation study did not require measurements or characteristics of the landslides be collected. MRC complimented the landslide inventory of Coyle by field confirmation, then collecting characteristics and measurements of the landslides identified by aerial photograph interpretation and field observations. Landslides post-1996 were not identified on aerial photograph; but were located in the field during field reconnaissance. It is likely that some post-1996 landslides have gone undetected.

Landslides identified from the field and aerial photograph observations are plotted on a landslide inventory map (Map A-1). Shallow seated landslides are represented as a point on the map, deep seated landslides are shown as a polygon representing the landslide deposit. Physical and geomorphic characteristics of landslides are categorized in a database including identification number, planning watershed, type of landslide, approximate failure date, slope gradient, length, width, depth, area, volume, sediment delivery, sediment routing, and associated land use (Table A-1). The certainty of landslide identification is also designated for each landslide. Three designations of certainty of identification are used: definite, probable and questionable. Definite means the landslide definitely exists (all field observed landslides would get this designation). Probable means the landslide probably is there, but there is some doubt (by the analyst) about its existence. Questionable means that the interpretation of the landslide identification may be inaccurate, the analyst has the least amount of confidence in the interpretation.

A description of select parameters inventoried for each landslide observed in field and during aerial photograph interpretation is presented below and tabulated in Figure A-1.

<u>Figure A-1</u>. Description of Select Parameters used to describe Mass Wasting in the Mass Wasting Inventory.

- I.D. Number: Each landslide is assigned a number in the inventory.
- Planning Watershed: Denotes the planning watershed in which the landslide is located.
 - NN = North Fork Noyo
 - NO = Olds Creek
 - NR = Redwood Creek
 - NH = Hayworth Creek
 - NM = Middle Fork of the North Fork Noyo
 - MC = McMullen Creek

- TSU terrain stability unit in which landslide is located.
- Process/Type:
 - DS = debris slide
 - DT = debris torrent
 - DF = debris flow
 - RS = rock slide
 - EF = earth flow
- Certainty: The certainty of identification is recorded.
 - D Definite, P Probable; Q Questionable.
- Approximate Failure Date: Minimum failure date is typically the photo year that the slide first appears on or the year observed in the field.
- Physical Characteristics: Include length, width, depth, area, and volume of individual slides.
- Sediment delivery and routing: Includes sediment delivered to streams (N no sediment delivered; P possible delivery, Y sediment delivered), estimate of the percent of landslide mass delivered, the type of stream that sediment was delivered to (perennial or ephemeral/intermittent).
- Associate land use: Road, landing, skid trail or rock pit association.
- Min log (q/T) value, minimum value from SHALSTAB calculations for landslide site, from validation study (Dietrich et. al., 1998).

Landslide dimensions (length and width) for landslides not visited in the field were determined by measuring the mass wasting feature directly from aerial photographs. To extrapolate depth to shallow-seated landslides (debris slides, flows or torrents) not visited in the field, a comparison was done between the mean value slide depth and distribution of landslide depths as observed in the field (see Appendix A for plotted histograms). From this comparison it was determined that the use of two separate mean shallow-landslide depth values were representative of the sampled population. Mean depth of field observed shallow-landslides that were road associated received one depth (3.5 feet); mean depth of shallow-landslides non-road associated received another depth (3 feet). These mean depth values were extrapolated for shallow-landslides that were not visited in the field.

Two techniques were employed in order to extrapolate a sediment volume delivery percentage to landslides not visited in the field. Landslides that were determined to be directly adjacent to a watercourse from topographic maps and aerial photograph interpretation were assigned 100% delivery. Landslides that were determined to deliver, but were not directly adjacent to a watercourse, were assigned the mean delivery percentage from landslides observed in the field.

Landslides were classified based on the likelihood that some land use practice was associated with the slope failure. In this analysis the effect of silvicultural techniques were not observed. Because almost all of the Noyo WAU has been managed, both currently and historically, for timber production it was determined that the effect of silvicultural practices was too difficult to confidently assign to landslides. There have been too many different silvicultural activities over time for reasonable confidence in a landslide evaluation based on silviculture. The land use practices that were assigned to landslides were associations with roads, skid trails, landings, or

rock quarries. It was assumed that a landslide adjacent to a road, landing, rock pit or skid trail was triggered either directly or indirectly by that land use practice. Cutslope failures from roads, landings, rock pits or skid trails were only identified if the landslide mass was transported over the features' prism. If the cutslope failure did not cross the features' prism it was assumed that the failure would remain perched on the road, landing, skid trail or rock pit and would not deliver to a watercourse. Some surface erosion could result from a cutslope failure; this is assumed to be addressed in the road surface erosion estimates (Surface Erosion module).

Accuracy in identifying landslides on aerial photographs was dependent on the size of the slide, thickness of canopy, and logging history. Landslides mapped in areas recently logged or through a thin canopy are identified with the highest level of confidence. Less confidence is placed on landslides mapped in areas with thick canopy. The landslide inventory results are considered a minimum estimate of sediment production. This is because landslides that were too small to identify on aerial photographs may have been missed, landslide surfaces could have reactivated in subsequent years and not been quantified, and secondary erosion by rills and gullies on slide surfaces is difficult to assess. However, small landslides cumulatively may not deliver amounts of sediment that would significantly alter total sediment delivery.

The deep-seated landslides (rock slides and earth flows) received less attention in the landslide inventory than shallow-landslides. The deep-seated landslides will be treated on a site by site basis in the Noyo WAU, likely during timber harvest plan preparation and review. Only basic information on the deep-seated landslides such as location and surface area was collected.

Sediment Input from Shallow-landslides

The time period assumed for mass wasting interpretation and sediment budget analysis is forty years. This is assumed because of the use of 1996 and 1978 aerial photographs and field observations in 1998 (twenty year span) and because vegetative recovery on landslide surfaces makes it difficult to detect, with much certainty, landslides farther back than about twenty years from aerial photographs. Landslides, particularly small landslides, can re-vegetate much faster than 20 years in fact it can be difficult to observe a small landslide even ten years after failure. We acknowledge that we have likely missed some small mass wasting events by using a 20-year separation in aerial photograph interpretation. However, we assume we have captured the majority of the larger mass wasting events in this analysis. It is the large mass wasting events that provide the greatest sedimentation impacts. In the case of the landslides observed in the Noyo WAU, landslides greater than 300 cubic yards in size represented over 87% of the sediment delivery estimated. Landslides greater than 200 and 100 cubic yards in size represented approximately 92% and 97%, respectively of the sediment delivery estimated.

Small streamside mass wasting is difficult to quantify on aerial photographs due to their small size and dense stream-side canopy cover. In order to estimate sediment input for these areas, selected stretches of streamside topography were sampled. Mass wasting determined to have occurred in the last five years was measured and the sediment input rates of these sampled areas used to extrapolate sediment inputs from similar streamside areas throughout the watershed. It

was assumed that this process would be constant for the forty year time period assessed in this report.

Sediment delivery estimates from mapped shallow-landslides combined with the small streamside mass wasting volumes were used to produce the total mass wasting sediment input. Sediment input to stream channels by mass wasting is quantified for two twenty-year time periods (1958-1978, 1978-1998). The Upper Noyo Planning Watershed only had sediment input quantified for the 1978-1998 time period due to lack of 1978 aerial photographs for that area.

Movement of deep-seated landslides has likely resulted in some sediment delivery in the Noyo WAU. Present sediment delivery from deep-seated landslides is judged to be difficult to determine. Factors such as rate of movement or depth of the deep-seated landslide are difficult to determine without in-depth geotechnical observations. Many of the deep-seated landslides mapped are dormant landforms. Only a couple of the mapped deep-seated landslides were observed to have recent movement associated with them. Thus the sediment delivery from deep-seated landslides is probably low. Some of the sediment delivery from shallow-landslides is the result of conditions created by deep-seated landslides. For example a deep-seated failure could result in a debris slide or torrent which delivered sediment. Furthermore, over-steepened scarps or toes of deep-seated landslides may have shallow failures associated with them. These types of sediment delivery from shallow-landslides are accounted for in the delivery estimates.

Terrain Stability Units

Terrain stability units (TSUs) are delineated by partitioning the landscape into zones characterized by similar geomorphic attributes, shallow seated landslide potential, and sediment delivery to stream channels. Terrain stability units were formerly called mass wasting map units (MWMU) in the December, 2000 version of this mass wasting report. A combination of aerial photograph interpretation, field investigation and SHALSTAB were utilized to delineate TSUs. The TSU designations for the Noyo WAU are only meant to be general characterizations of similar geomorphic and terrain characteristics related to shallow seated landslides. Deep-seated landslides are also shown on the TSU map (Map A-2). The deep-seated landslides have been included to provide land managers with supplemental information to guide evaluation of harvest planning and subsequent needs for geologic review. The landscape and geomorphic setting in the Noyo WAU is certainly more complex than generalized TSUs delineated for this evaluation; the TSUs are only meant to be a starting point for gauging the need for site-specific field assessments.

The delineation of each TSU is described based on the landform present, the mass wasting processes, sensitivity to forest practices, mass wasting hazard, delivery potential, hazard potential, and forest management related trigger mechanisms for shallow seated landslides. The landforms define the terrain found within the TSU. The mass wasting process section is a summary of landslide types found in the TSU. Sensitivity to forest practice and mass wasting hazard is, in part, a subjective call by the analyst based on the relative landslide hazard and influence of forest practices. Delivery potential is based on proximity of TSU to watercourses

and the likelihood of mass wasting in the unit to reach watercourses. The hazard potential is based on a combination of the mass wasting hazard and delivery potential (Table A-1). The trigger mechanisms are a list of forest management practices that may have the potential to create mass wasting in the TSU.

<u>Table A-1</u>. Ratings for Potential Hazard of Delivery of Debris and Sediment to Streams by Mass Wasting (letters designate hazard: L= low, M= moderate, H = high)(Version 3.0, Washington Forest Practices Board, 1995).

			asung i otenu	al
		Low	Moderate	High
Delivery	Low	L	L	Μ
Potential	Moderate	L	Μ	Н
	High	L	Μ	Н

Mass Wasting Potential

RESULTS

Mass Wasting Inventory

A Landslide Inventory Data Sheet was used to record attributes associated with each landslide and is located in the appendix. The spatial distribution and location of landslides is shown on Map A-1.

A total of 305 shallow-seated landslides (debris slides, torrents or flows) were identified and characterized in the Noyo WAU. A total of 157 deep-seated landslides (rock slides or earth flows) were mapped in the Noyo WAU. A considerable effort was made to field verify as many landslides as possible to insure greater confidence in the results. A total of 31% of the identified shallow-landslides were field verified. From this level of field observations, extrapolation of landslide depth and sediment delivery was performed with a reasonable level of confidence. The mean depth of road related shallow-landslides lead to the assignment of a 3.5 ft. depth for road associated landslides (see appendix for histogram). Non-road related shallow-landslides (see appendix for histogram) were assigned a depth of 3 ft. The mean sediment delivery percentage assigned to shallow-landslides determined to deliver sediment, but not visited in the field is 81%. Deep-seated landslides did not have depth or sediment delivery statistics calculated. The temporal distribution of the 305 shallow-seated landslides observed in the Noyo WAU is listed in Table A-2. The spatial distribution by landslide process is shown in Table A-3.

Planning Watershed	1958-1978	1978-1998
	Landslides	Landslides
Olds Creek	10	41
Redwood Creek	7	7
North Fork Noyo	22	38
Hayworth Creek	44	42
Middle Fork North Fork Noyo	14	30
McMullen Creek	21	22
Upper Noyo	n/a*	7

Table A-2. Shallow-landslide Summary for the Noyo WAU Divided into Time Periods.

A-10

* - 1978 aerial photographs were not available for this area.

Planning Watershed	Debris Slides	Debris Torrents	Debris Flows	Rock Slides	Earth Flows	Total	Road Assoc.
Olds Creek	48	3	0	15	0	66	24
Redwood Creek	12	2	0	6	0	20	6
North Fork Noyo	59	1	0	30	0	90	13
Hayworth Creek	78	5	3	37	0	123	27
Middle Fork North Fork Noyo	42	1	1	49	0	93	13
McMullen Creek	41	2	0	17	1	61	13
Upper Noyo	4	2	1	1	0	8	4

Table A-3.	Slide Summary by	Type and Planning	Watershed for MR	C Ownership in the Noyo
WAU.				

The majority of landslides observed in the Noyo WAU are debris slides and rock slides. Only a few of the rock slides are known to be active in the Noyo WAU, the remaining are judged to be dormant features. Of the 305 shallow-seated landslides in the Noyo, 100 are determined to be road related. This is approximately 1/3 of the total number of shallow seated landslides.

Twenty debris torrents and flows were observed in the Noyo WAU. This is approximately 6 percent of the total shallow-landslides observed in the Noyo WAU. Debris torrents or flows are not common in the Noyo WAU, but do occur and are processes that should be taken into account in relation to forest management practices.

All of the shallow-landslides inventoried were initiated on slopes greater than 60 percent with the exception of four landslides with slopes as low as 45 percent. Those landslides are attributed to road practices and shallow ground water. The majority of inventoried landslides originated in convergent topography where sub-surface water tends to concentrate or on steep planar topography where sub-surface water can be concentrated at the base of slopes, in localized topographic depressions, or by subsoil geologic structures. Few landslides originated in divergent topography where sub-surface water is routed to the sides of ridges. Such observations were, in part, the basis for the delineation of the Noyo WAU into terrain stability units.

Terrain Stability Units

The landscape was partitioned into five terrain stability units (TSU) representing general areas of similar geomorphology, landslide processes, and sediment delivery potential for shallow seated landslides (Map A-2). The units are to be used by forest managers to assist in making decisions that will minimize future mass wasting sediment input into watercourses. The delineation for the TSUs was based on qualitative observations from aerial photographs, field evaluation, and SHALSTAB output. Deep-seated landslides are also shown on the TSU map (Map A-2). The deep-seated landslides have been included to provide land managers with supplemental information to guide evaluation of harvest planning and subsequent needs for geologic review.

Shallow seated landslide characteristics considered in determination of map units are size, frequency, delivery to watercourses, and spatial distribution. Hillslope characteristics considered

are slope form (convergence, divergence, planar), slope gradient, magnitude of stream incision, and overall geomorphology. The range of slope gradients was determined from USGS 1:24000 topographic maps and field observation. Hillslope and landslide morphology varies within each individual terrain stability unit and the boundaries are not exact. This evaluation is not intended to be a substitute for site specific field assessments. Site specific field assessments will still be required in some TSUs and deep-seated landslides or specific areas of some TSUs to assess the risk and likelihood of mass wasting impacts from a proposed management action. The terrain stability units are compiled on the entitled terrain stability unit Map (Map A-2).

TSU Number: 1	
Description:	Inner Gorge or Steep Slopes adjacent to Low Gradient Watercourses
Materials:	Shallow soils formed on weathered marine sedimentary rocks. May be composed of sediment from the toe of a deep-seated landslide deposit.
Landform:	Characterized by steep slopes or steep inner gorge topography along low gradient watercourses (typically less than 6-7%). An inner gorge is considered a geomorphic feature created from down cutting of the stream in response to tectonic uplift. Inner gorge slopes extend from either one side or both sides of the stream channel to the first break in slope. Inner gorge slope gradients typically exceed 70%. Slopes with lower inclination are locally present. Slopes commonly contain areas of multiple, coalescing shallow seated landslide scars of varying age. Steep slopes adjacent to low gradient streams are generally planar in form with slope gradients typically exceeding 70% and exhibit strong evidence of past landslide activity. The distinction between inner-gorge and steep streamside slopes is steep streamside slopes lack a distinct break in slope and has less active erosion from stream down cutting. The upper extent of the unit is variable. Where there is not a break in slope, the unit may exceed 150 feet upslope. Landslides in this unit generally deposit sediment directly into Class I and II watercourses.
Slope:	>70% to vertical, (mean slope of observed mass wasting events is 73%, range: 71%-76%)
Total Area:	920 ac.; 4.6 % of the total WAU area.
MW Processes:	1 road-associated landslide1 debris slides
	4 non-road associated landslides4 debris slides
Non Road-related Landslide Density:	0.03 landslides per acre for the past 40 years
Forest Practices Sensitivity:	High sensitivity to roading due to slopes adjacent to watercourses, bedrock underlying inner gorge slopes creates increased stability. High sensitivity to harvesting and forest management

Mass Wasting Potential:	practices due to steep slopes with localized colluvial or alluvial soil deposits next to watercourses. Bedrock underlying inner gorge slopes creates increased stability. High; localized potential for landslides in both unmanaged and managed conditions
Delivery Potential:	High
Delivery Criteria Used:	Steep slopes adjacent to stream channels, all landslides delivered into perennial streams
Hazard-Potential Rating:	High
Forest Management Related Trigger Mechanisms:	 Sidecast fill material placed on steep slopes can initiate debris slides or flows in this unit. Concentrated drainage from roads onto unstable areas can initiate debris slides or flows in this unit. Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit. Cut-slope of roads can expose potential failure planes creating debris slides, torrents or flows in this unit. Sidecast fill material created from skid trail construction placed on steep slopes can initiate debris slides or flows in this unit. Concentrated drainage from skid trails onto unstable areas can initiate debris slides or flows in this unit. Concentrated drainage from skid trails onto unstable areas can initiate debris slides or flows in this unit. Cut-slope of skid trails can remove support of slope creating debris slides, torrents or flows in this unit. Root decay of hardwood or non-redwood conifer species can be a contributing factor in the initiation of debris slides, torrents or flows in this unit.
Confidence:	High, the inner gorge of the Noyo WAU is easily identified in the field. The near vertical slopes of the bedrock walls found in this unit are

relatively stable, the overlying veneer of soils are moderately unstable.

TSU Number:	2
Description:	Steep slopes or inner gorge topography adjacent to high gradient intermittent or ephemeral watercourses.
Materials:	Shallow soils formed from weathered marine sedimentary rocks.
Landforms:	Characterized by steep slopes or steep inner gorge topography along high gradient watercourses (typically greater than 7%). An inner gorge is considered a geomorphic feature created from down cutting of the stream in response to tectonic uplift. Inner gorge slopes extend from either one side or both sides of the stream channel to the first break in slope. Inner gorge slope gradients typically exceed 70%. Slopes with lower inclination are locally present. Slopes commonly contain areas of multiple, coalescing shallow seated landslide scars of varying age. Steep slopes adjacent to low gradient streams are generally planar in form with slope gradients typically exceeding 70% and exhibit strong evidence of past landslide activity. The distinction between inner-gorge and steep streamside slopes is steep streamside slopes lack a distinct break in slope and has less active erosion from stream down cutting. The upper extent of the unit is variable. Where there is not a break in slope, the unit may exceed 100 feet upslope. Landslides in this unit generally deposit sediment directly into Class II and III watercourses.
Slope:	>70% (mean slope of observed mass wasting events is 77%, range: 68%-95%)
Total Area:	758 ac.; 4 % of total WAU area
MW Processes:	7 road-associated landslides7 Debris slides
	 26 non-road associated landslides 24 Debris slides 2 Debris torrent
Non Road-related Landslide Density:	0.04 landslides per acre for the past 40 years
Forest Practices Sensitivity:	High sensitivity to roads due to steep slopes adjacent to watercourses, high to moderate sensitivity to harvesting and forest management due to steep slopes next to watercourses. Localized areas of steeper slopes may have an even higher sensitivity to forest practices.

Mass Wasting Potential: Delivery Pote	High, due to the steep converging topography of the slope in both unmanaged and managed conditions
·	
Delivery Crite Used:	Steep slopes adjacent to stream channels, 87 percent of landslides observed in this unit delivered sediment to watercourses.
Hazard-Poten Rating:	tial High
Forest Manag Related Trigg Mechanisms:	
	•Sidecast fill material placed on steep slopes can initiate debris slides, torrents or flows in this unit.
	•Concentrated drainage from roads onto unstable areas can initiate debris slides, torrents or flows in this unit.
	•Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit.
	•Cut-slope of roads can over-steepen the slope creating debris slides, torrents or flows in this unit.
	•Cut-slope of roads can remove support of the toe or expose potential failure planes of rock slides or earth flows.
	•Sidecast fill material created from skid trail construction placed on steep slopes can initiate debris slides, torrents or flows.
	•Concentrated drainage from skid trails onto unstable areas can initiate debris slides, torrents or flows.
	•Cut-slope of skid trails can remove support of the toe or expose potential failure planes of rock slides or earth flows.
	• Root decay of hardwood or non-redwood conifer species can be a contributing factor in the initiation of debris slides, torrents or flows in this unit.
	•Loss of evapo-transpiration from forest harvest can increase groundwater levels initiating or accelerating movement in rock slides or earth flows or aid in the initiation of debris slides, torrents or flows.
Confidence:	High confidence for susceptibility of unit to landslides and deliver sediment. Moderate confidence in placement of this unit. This unit is highly localized and exact boundaries are better determined from field observations. Within this unit there are areas of low gradient slopes that are less susceptible to mass wasting.

TSU Number:	3
Description:	Dissected and convergent topography
Materials:	Shallow soils formed from weathered marine sedimentary rocks with localized areas of thin to thick colluvial deposits.
Landforms:	These areas have steep slopes (typically greater than 70%) that have been sculpted over geologic time by mass wasting events. The area is characterized primarily by strong evidence of past shallow landslide failures and 1) steep convergent and dissected topography located within steep gradient colluvial hollows or headwall swales and small high gradient watercourses, and 2) local very steep planar slopes. MRC intends this unit to represent areas of potentially high to moderately high hazard for shallow landslides that does not constitute a continuous streamside unit (otherwise would classify as TSU 1 or 2). The mapped unit may represent isolated individual "high hazard" areas or areas where there is a concentration of "high hazard" areas. Boundaries between higher hazard areas and other more stable areas (i.e. divergent and lower gradient slopes) within the unit should be keyed out as necessary based on field verification of landslide features.
Slope:	>65%, (mean slope of observed mass wasting events is 73% range: 60 %-110%, 1 observation of 46% and 1 of 50%)
Total Area:	9358 ac., 47% of the total WAU
MW Processes:	 74 road-associated landslides 68 Debris slides 6 Debris torrents 132 non-road associated slides 123 Debris slides 5 Debris torrents
Non Road-related Landslide Density:	 4 Debris flow0.013 landslides per acre for the past 40 years
Forest Practices Sensitivity:	Moderate to high sensitivity to road building, moderate to high sensitivity to harvesting and forest management practices due to moderately steep slopes within this unit. Localized areas of steeper slopes have an even higher sensitivity to forest practices
Mass Wasting Potential:	High

Delivery Potential:	Moderate
Delivery Criteria Used: Hazard-Potential Rating:	The converging topography directs mass wasting down slopes toward watercourses. Headwater swales can torrent or flow down watercourses. Approximately 63% of landslides delivered sediment in this unit. High
Forest Management Related Trigger Mechanisms:	 Sidecast fill material placed on steep slopes can initiate debris slides, torrents or flows in this unit. Concentrated drainage from roads onto unstable areas can initiate debris slides, torrents or flows in this unit. Concentrated drainage from roads can increase groundwater, accelerating movement of rock slides or earth flows in this unit. Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit. Cut-slope of roads can over-steepen the slope creating debris slides, torrents or flows in this unit. Cut-slope of roads can remove support of the toe or expose potential failure planes of rock slides or earth flows. Sidecast fill material created from skid trail construction placed on steep slopes can initiate debris slides, torrents or flows. Concentrated drainage from skid trails onto unstable areas can initiate debris slides, torrents or flows. Concentrated drainage from skid trails onto unstable areas can initiate debris slides, torrents or flows. Concentrated drainage from skid trails onto unstable areas can initiate debris slides, torrents or flows. Concentrated drainage from skid trails onto unstable areas can initiate debris slides, torrents or flows. Cut-slope of skid trails can remove support of the toe or expose potential failure planes of rock slides or earth flows. Root decay of hardwood or non-redwood conifer species can be a contributing factor in the initiation of debris slides, torrents or flows in
	 this unit. Loss of evapo-transpiration from forest harvest can increase groundwater levels initiating or accelerating movement in rock slides or earth flows or aid in the initiation of debris slides, torrents or flows.
and h	some areas within this unit could have higher susceptibility to landslides igher delivery rates due to localized areas of steep slopes with weak soils,

and unusually adverse ground water conditions.

TSU Number: 4	
Description:	Non-dissected topography
Materials:	Shallow to moderately deep soils formed from weathered marine sedimentary rocks.
Landforms:	Moderate to moderately steep hillslopes with planar, divergent, or broadly convergent slope forms with isolated areas of steep topography or strongly convergent slope forms. Unit is generally a midslope region of lesser slope gradient and more variable slope form than unit 3.
Slope:	>35%, (mean slope of observed mass wasting events 77%, range: 51%-90%)
Total Area:	5070 ac., 25% of the total WAU
MW Processes:	 road-associated landslides 9 Debris slides 2 Debris torrents
	 19 non-road associated slides 17 Debris slides 1 Debris torrent 1 Debris flow
Non Road-related Landslide Density:	0.004 landslides per acre for the past 40 years
Forest Practices Sensitivity:	Moderate to low sensitivity to road building, moderate to low sensitivity to harvesting and forest management practices due to moderate slope gradients and non-converging topography within this unit. Localized areas of steeper slopes have and even higher sensitivity to forest practices
Mass Wasting Potential:	Moderate to Low
Delivery Potential:	Moderate
Delivery Criteria Used:	Sediment delivery is localized in this unit to landslides which occur adjacent to watercourses, or have long run-outs to a watercourse. Approximate 57% of landslides delivered sediment in this unit.
Hazard-Potential Rating:	Moderate to Low

Forest Management Related Trigger Mechanisms:

•Sidecast fill material placed on steep slopes can initiate debris slides, torrents or flows in this unit.

•Concentrated drainage from roads onto unstable areas can initiate debris slides, torrents or flows in this unit.

•Concentrated drainage from roads can increase groundwater, accelerating movement of rock slides or earth flows in this unit.

•Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit.

•Cut-slope of roads can over-steepen the slope creating debris slides, torrents or flows in this unit.

•Cut-slope of roads can remove support of the toe or expose potential failure planes of rock slides or earth flows.

•Sidecast fill material created from skid trail construction placed on steep slopes can initiate debris slides, torrents or flows.

•Concentrated drainage from skid trails onto unstable areas can initiate debris slides, torrents or flows.

•Cut-slope of skid trails can remove support of the toe or expose potential failure planes of rock slides or earth flows.

• Root decay of hardwood or non-redwood conifer species can be a contributing factor in the initiation of debris slides, torrents or flows in this unit.

•Loss of evapo-transpiration from forest harvest can increase groundwater levels initiating or accelerating movement in rock slides or earth flows or aid in the initiation of debris slides, torrents or flows.

Confidence: High, some areas within this unit could have higher susceptibility to landslides and higher delivery rates due to localized areas of steep slopes with weak soils, and adverse groundwater conditions.

TSU Number: 5	
Description:	Low relief topography
Material:	Moderately deep to deep soil, formed from weathered marine sedimentary rocks.
Landforms:	Characterized by low gradient slopes generally less than 40 %, although in some places slopes can be steeper. This unit occurs on ridge crests, low gradient side slopes and well developed terraces. Debris slides seldom occur and usually do not deliver sediment to stream channels. This unit can have some localized areas of moderately steep (>35%), concave topography which can be more prone to mass wasting processes.
Slope:	<40% (mean slope of observed mass wasting events 86%)
Total Area:	3773 ac., 19% of WAU area
MW Processes:	3 road-associated landslides3 Debris slides
	2 non-road associated landslides2 Debris slides
Non Road-related Landslide Density:	0.0005 landslides pre acre for past 40 years.
Forest Practices Sensitivity: Mass Wasting	Low sensitivity to road building and forest management practices due to low gradient slopes
Potential:	Low
Delivery Potential:	Low
Delivery Criteria Used:	Sediment delivery in this unit is low. Delivery which occurs is associated with road failures adjacent to watercourses or moderately steep slopes adjacent to watercourses.
Hazard-Potential Rating:	Low

Forest Management Related Trigger	
Mechanisms:	
	•Sidecast fill material placed on steep slopes can initiate debris slides, torrents or flows in this unit.
	•Concentrated drainage from roads onto unstable areas can initiate debris slides, torrents or flows in this unit.
	•Concentrated drainage from roads can increase groundwater, accelerating movement of rock slides or earth flows in this unit.
	•Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit.
	•Cut-slope of roads can over-steepen the slope creating debris slides in this unit.
	•Concentrated drainage from skid trails onto unstable areas can initiate debris slides, torrents or flows in this unit.
	•Loss of evapo-transpiration from forest harvest can increase groundwater levels initiating or accelerating movement in rock slides or earth flows in this unit or aid in initiation of debris slides, torrents or flows.
Confidence:	High, except along TSU boundaries where the confidence level is moderate due to inexactness of boundary locations.

Sediment Input from Mass Wasting

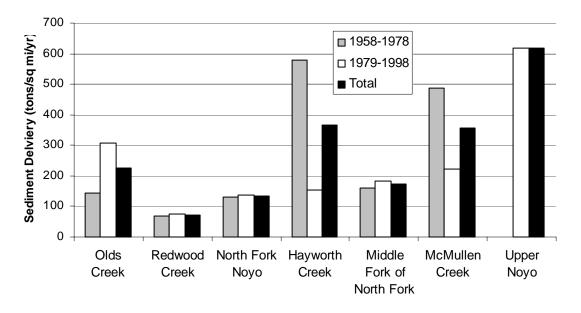
Sediment delivery was estimated for landslides and small streamside mass wasting in the Noyo WAU. Landslides were determined to have either no sediment delivery or to deliver all or a percentage of their total volume. Of the shallow-landslides mapped by MRC in this watershed analysis, 68 percent of the landslides delivered sediment (Table A-4).

<u>Table A-4.</u> Total Shallow-seated Landslides Mapped for each Planning Watershed in the Noyo WAU. (Road Associated Landslides are Included).

		Landslides with No	Landslides with
Planning Watershed	Total Slides	Sediment Delivery	Sediment Delivery
Olds Creek	51	20	31
Redwood Creek	14	8	6
North Fork Noyo	60	25	35
Hayworth Creek	86	23	63
Middle Fork North Fork	43	11	32
McMullen Creek	44	9	35
Upper Noyo	7	2	5
Sum	305	98	207
Percentage	100%	32	68%

Mass wasting was separated into two time periods for data analysis. The first time period is for mass wasting that occurred from 1958-1978, the second time period assessed is from 1978-1998. The cut-off dates from each of the time periods are based on the date of aerial photographs used to interpret landslides (1978 and 1996) and field observations (1998).

A total of 290,433 tons of mass wasting sediment delivery was estimated for the time period 1958-1998 in the Noyo WAU. This equates to 453 tons/sq. mi./yr. Of the total estimated amount 171,933 tons (59% of total) occurred in 1958-1978 and 118,501 (41% of total) occurred in the 1978-1998 time period (Table A-5).


For North Fork Noyo, Hayworth Creek, Redwood Creek, and McMullen Creek planning watersheds, sediment input from mass wasting was highest during the 1958-1978 period (Table A-5)(Chart A-1). For Olds Creek and Middle Fork Noyo planning watersheds, sediment input from landslides was highest from 1978-1998.

The highest sediment input from mass wasting occurs in the Hayworth Creek and McMullen Creek planning watersheds. The higher sediment delivery appears to be due to a combination of extensive tractor yarding and intense forest management prior to forest practice rules, and a few very large landslides that contributed a high amount of the sediment in those planning watersheds. In contrast, Redwood Creek Planning Watershed has an extremely low mass wasting input. The low input for Redwood Creek, on Mendocino Redwood Company property may be attributable to a low number of mapped landslides (15), and a wide strath terrace bounding Redwood Creek. Most landslides in this planning watershed deposit sediment to this terrace and not to a watercourse.

Planning Watershed	1958-1978	1978-1998
Olds Creek	10446	22350
Redwood Creek	2368	2596
North Fork Noyo	20137	21255
Hayworth Creek	87086	23086
Middle Fork North Fork	21077	24033
McMullen Creek	30818	14084
Upper Noyo	n/a	11097
Total	171933	118501

<u>Table A-5.</u> Sediment Volume Input for MRC Ownership Listed by Planning Watershed. (data reported in tons of sediment delivered)

<u>Chart A-1.</u> Total Mass Wasting Sediment Input Rate (tons/yr/sq. mi.) from Landslides and Small Streamside Mass Wasting for MRC Ownership Shown by Planning Watershed and Time Period.

The twenty year look back periods used in this analysis are useful to provide a general idea of the magnitude of sediment delivery for the time periods analyzed. However, there is additional information available to better quantify the first ten years of each twenty year look back period by the use of data generated by the "Sediment Source Analysis and Preliminary Sediment Budget for the Noyo River" prepared by Matthews (1999). Analysis of the data presented in the Matthews study suggest that during the time periods 1957 to 1963 and 1963 to 1965 sediment delivery was 12 and 7 times respectively of that apparently delivered between 1965 to 1978 in

the Headwaters Planning Area of the Noyo River (includes McMullen Creek, Redwood Creek, and Olds Creek).

In the North Fork Planning Area (Hayworth Creek and Middle Fork North Fork) of the Noyo River a similar review of delivered sediment was also attempted. This review showed that between the time periods 1957 to 1963 and 1963 to 1965 sediment delivery was about 1½ and one-half times respectively, that of the 1965 to 1978 sediment delivery. Likewise, the determined delivery rate for 1978 to 1988 was about 8½ times that determined for the 1988 to 1996 time period in the Hayworth Creek Planning Watershed. In the North Fork Planning watershed the 1978 to 1988 delivery rate was 10 times that determined for the 1988 to 1996 time period (Matthews, 1999).

Road associated mass wasting was found to contribute 53,635 tons (86 tons/sq. mi./yr) of sediment over the 40 years analyzed (1958-1998) in the Noyo WAU (Table A-6). This represents approximately 18% of the total mass wasting inputs for the Noyo WAU for 1958-1998. This is a relatively low percentage of the sediment delivery given that number of road associated landslides represented almost 1/3 of total shallow-landslides observed in the Noyo WAU. In some areas road associated sediment delivery was the dominant source (Upper Noyo Planning Watershed). However, in other areas road associated sediment delivery was low (Hayworth Creek, Middle Fork North Fork). The areas where road associated sediment is a low percentage is due to the fact that a few very large landslides and an abundance of small streamside mass wasting were contributing the majority of the estimated sediment. This mass wasting was not road associated.

	Road Associated	
	Mass Wasting	Percent of Total
Planning Watershed	Sediment	Sediment
	Delivery (tons)	Delivery
Olds Creek	14895	45%
Redwood Creek	1928	39%
North Fork Noyo	9186	22%
Hayworth Creek	5557	5%
Middle Fork North Fork	1797	4%
McMullen Creek	12500	28%
Upper Noyo	7772	70%
Total	53635	18%

<u>Table A-6</u>. Road Associated Sediment Delivery for Shallow Seated Landslides for the Noyo WAU by Planning Watershed, 1958-1978.

A-25

Sediment Input by Terrain Stability Unit (TSU)

Total mass wasting sediment delivery for the Noyo WAU, from mass wasting estimates, was separated into respective terrain stability units. It should be noted that not all planning watersheds contain all five TSUs and that small streamside mass wasting data was added only to those TSUs in which small streamside mass wasting occurred.

The terrain stability unit with the highest sediment delivery is TSU 3 (Table A-7); which is estimated to deliver 148,833 tons of sediment over the last forty years, 51 percent of the total sediment input. Combining streamside units (TSU 1 and 2) yields 116,217 tons, 40 percent of the total sediment input. Combining all the streamside mass wasting provides close to half of the entire amount of sediment delivery. TSU 4 is estimated to have delivered a relatively low amount of sediment (22,276 tons) suggesting its moderate landslide hazard. TSU 5 delivered the lowest amount of sediment (3118 tons) due to the fact that it is a low hazard area and typically does not deliver landslide material except in extraordinary events.

Table A-7. Total Sediment Delivery by Terrain stability unit in the Noyo WAU (1958 to 1998).

		Terrai	n		
		stability	unit		
	1	2	3	4	5
Sediment (tons)	91087	25130	148833	22276	3118
% of Total	31%	9%	51%	8%	1%

CONCLUSIONS

In natural forest environments of the California Coast Range, mass wasting is a common occurrence. In the Noyo WAU this is due to relatively steep slopes, the condition of weathered marine sedimentary rock (inter-bedded sandstone and shale), locally thick colluvial soils and the occurrence of high intensity rainfall events. The discovery of numerous 1998 mass wasting features following the intense El Niño winter of 1997-1998 demonstrates that mass wasting events are episodic and many landslides may happen in a short time frame. Mass wasting features are observable throughout the Noyo WAU. Nearly all of the landslides visited in the field during this assessment occurred on slopes greater than 60%, in areas of convergent and or very steep planar topography.

Mass wasting sediment input is estimated to be at least 453 tons/sq. mi./ yr. over the 1958-1998 time period. Hayworth Creek and McMullen Creek had the highest sediment delivery in the Noyo. These areas were particularly high due to past harvest practices and the occurrence of a few very large landslides that significantly increased the sediment delivery amounts. Overall in the Noyo WAU sediment delivery from mass wasting was highest in the 1958-1978 time period. The forest harvesting technique utilized in the 1950's and 1960's was tractor skidding of logs. This skidding was performed on steep slopes and often in streamside

environments and inner gorges, compacting and destabilizing the soil, increasing the frequency of mass wasting.

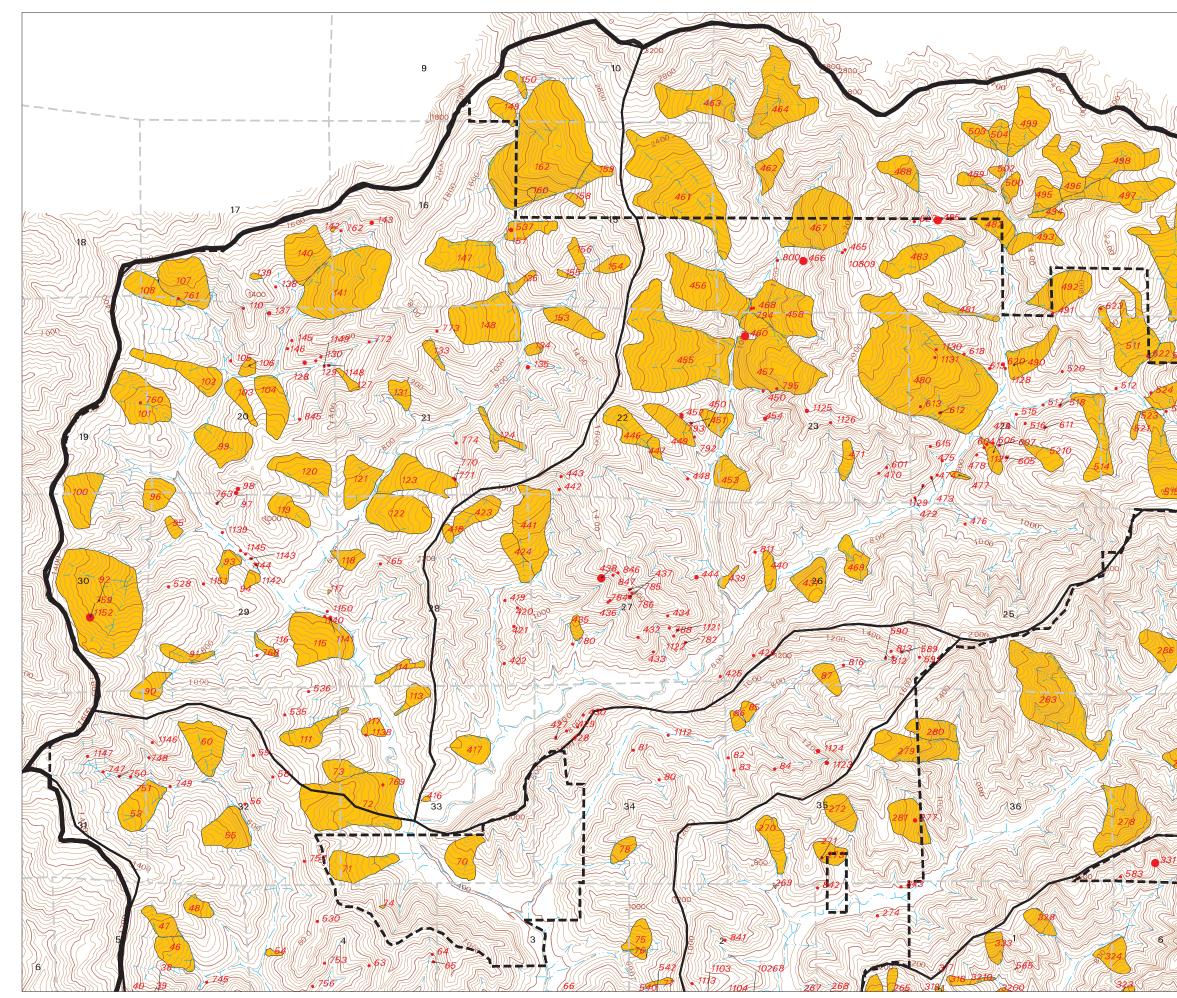
Approximately 1/3 of the number of shallow seated landslides are road associated in the Noyo WAU, though road related mass wasting only represented 18% of the sediment delivery in the Noyo WAU. However, in some areas it was as high as 70% of the mass wasting sediment delivery. A high number of road associated landslides are occurring in the Noyo WAU. The reason that the sediment delivery proportion was so low is because a few very large landslides and a high rate of small streamside mass wasting, that are not road associated, that significantly increased the sediment delivery amounts. Better road construction practices combined with design upgrades of old roads will lower this amount over time. This mitigation measure will need to be a focus of concern.

TSU 3 represented the greatest mass wasting sediment delivery for any one TSU, providing 51% of the sediment delivered from 1958-1998. Streamside mass wasting (combining TSU 1 and 2) yields 40% of the total mass wasting sediment input. Terrain stability units 1, 2 and 3 represent over 90% of the sediment inputs from mass wasting. Management activities in these areas will need special attention and evaluation.

LITERATURE CITED

Cruden, D.M. and D.J.Varnes. 1996. Landslide types and processes. In: Landslides Investigation and Mitigation, Transportation Research Board, Washington DC, Special Report 247: 36-75.

Dietrich, W.E. and Montgomery, D.R. SHALSTAB; a digital terrain model for mapping shallow-landslide potential, NCASI Technical Report, February 1998, 29 pp.


Dietrich, W.E., Real de Asua, R., Coyle, J., Orr, B., and Trso, M. 1998. A validation study of the shallow slope stability model, SHALSTAB, in forested lands of Northern California. Stillwater Sciences Internal Report, Berkeley, CA.

Matthews, G., Coyle., J. and J. Anderson 1999. Sediment source analysis and preliminary sediment budget for the Noyo River. Prepared for Tetra Tech, Inc.for the Uniteds States Envrionmental Protection Agency. Contract #68-C7-0018, work Assg. # 0-18. Graham Matthews and Assoc., Weaverville, CA.

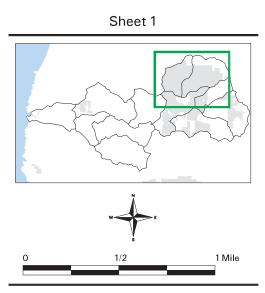
Selby, M.J. 1993. Hillslope materials and processes. Second Edition. Oxford University Press. Oxford.

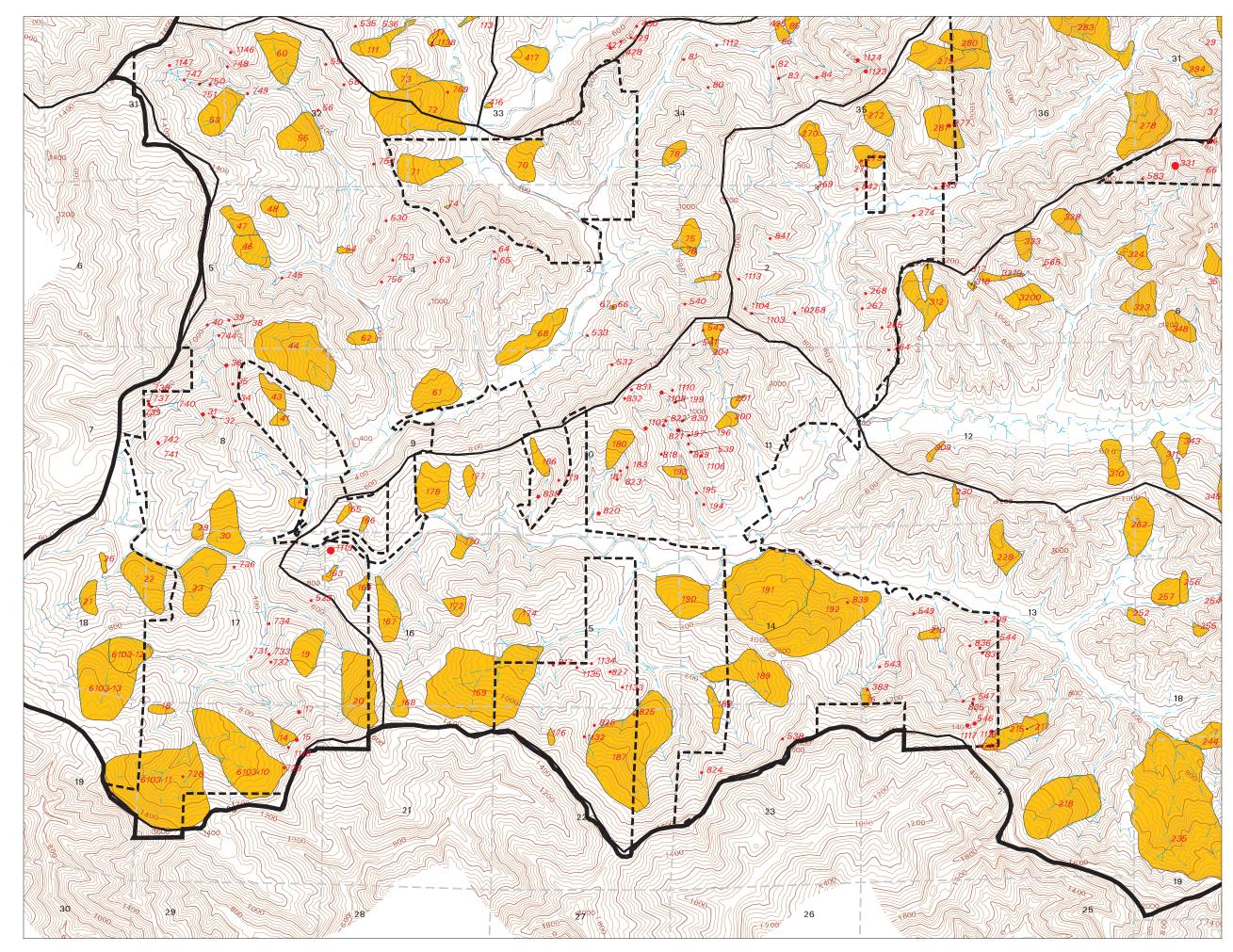
A-27

Washington Forest Practice Board. 1995. Standard methodology for conducting watershed analysis. Version 3.0. WA-DNR Seattle, WA.

Map A-1 Mass Wasting Inventory

Large Deep-Seated Landslides


Shallow-Seated Landslides *


- < 500 cubic yards
- 500 5000 cubic yards
- > 5000 cubic yards

Flow Class

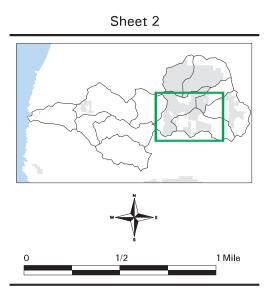
- --- Class I
- ---- Class II
- ----- Class III
- -- MRC Ownership
- WWAA Boundary
- ---- Planning Watershed Boundary

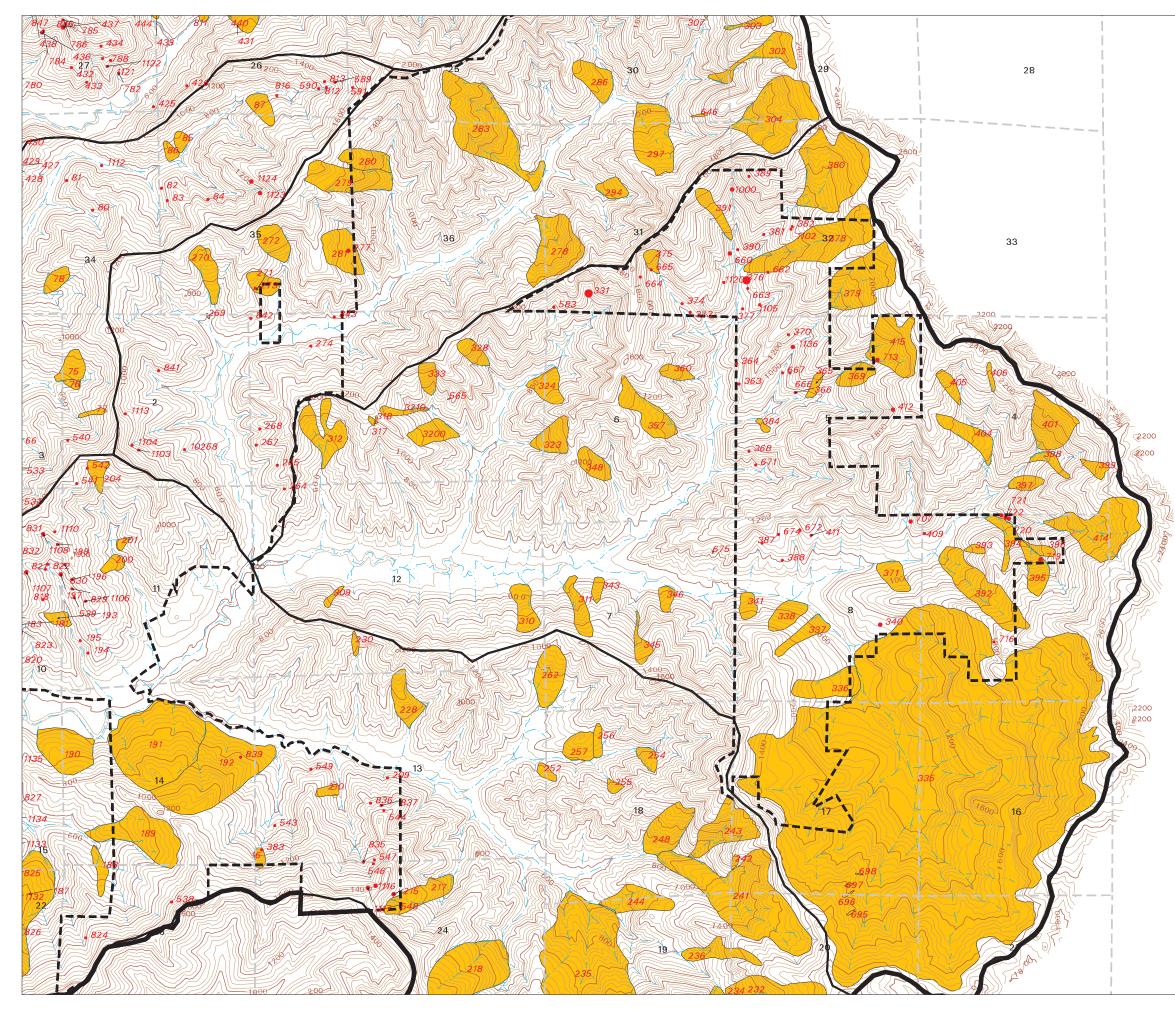
* only shown for MRC Ownership

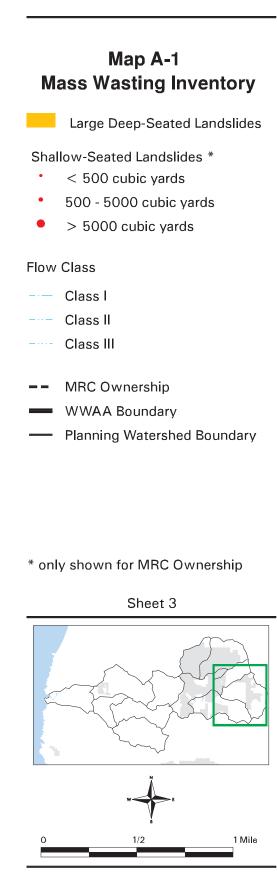
Copyright © 2000 Mendocino Redwood Company, LLC

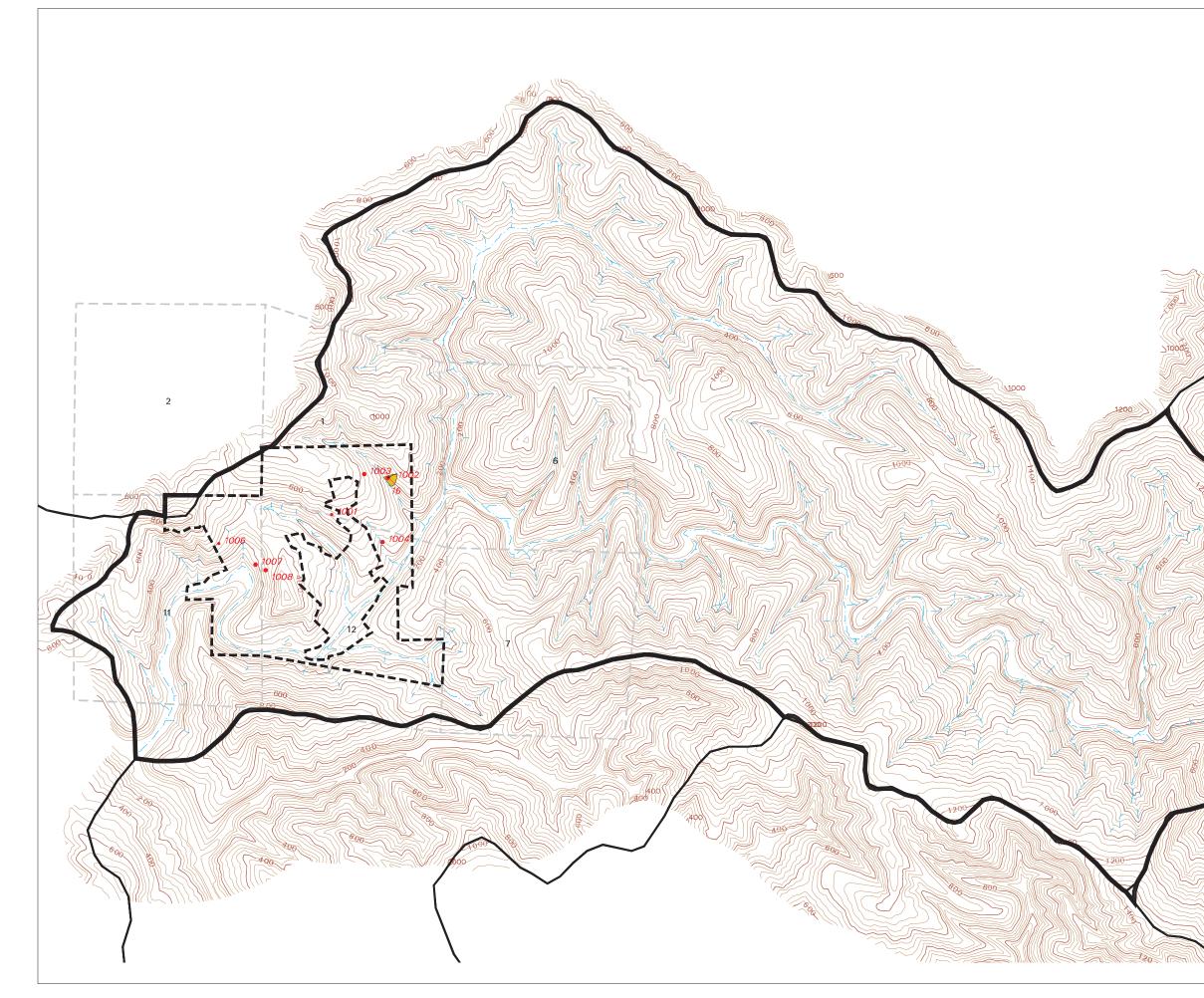
Map A-1 Mass Wasting Inventory

Large Deep-Seated Landslides


Shallow-Seated Landslides *


- < 500 cubic yards
- 500 5000 cubic yards
- > 5000 cubic yards


Flow Class

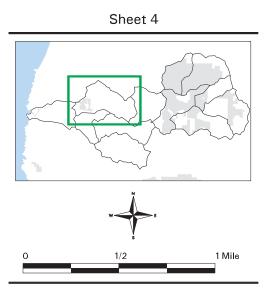

- --- Class I
- ---- Class II
- ----- Class III
- -- MRC Ownership
- WWAA Boundary
- ---- Planning Watershed Boundary

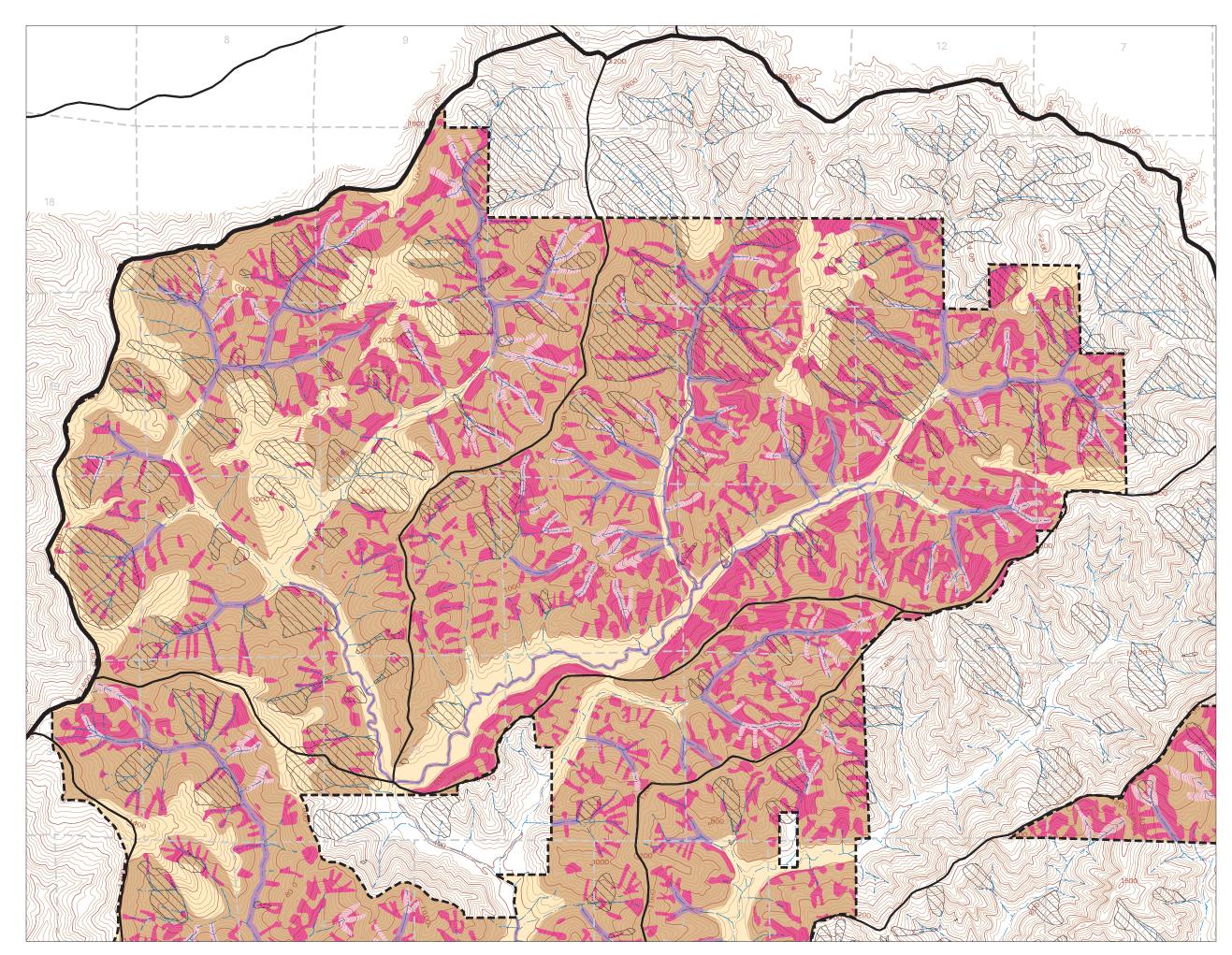
* only shown for MRC Ownership

Map A-1 Mass Wasting Inventory

Large Deep-Seated Landslides

Shallow-Seated Landslides *


- < 500 cubic yards
- 500 5000 cubic yards
- > 5000 cubic yards


Flow Class

.

- --- Class I
- ---- Class II
- ----- Class III
- -- MRC Ownership
- WWAA Boundary
- ---- Planning Watershed Boundary

* only shown for MRC Ownership

Map A-2 Terrain Stability Units

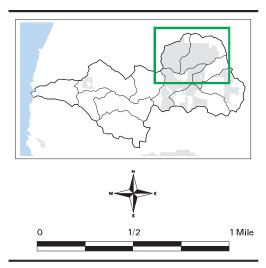
Unit 1: Steep slopes or inner gorge along low gradient watercourses

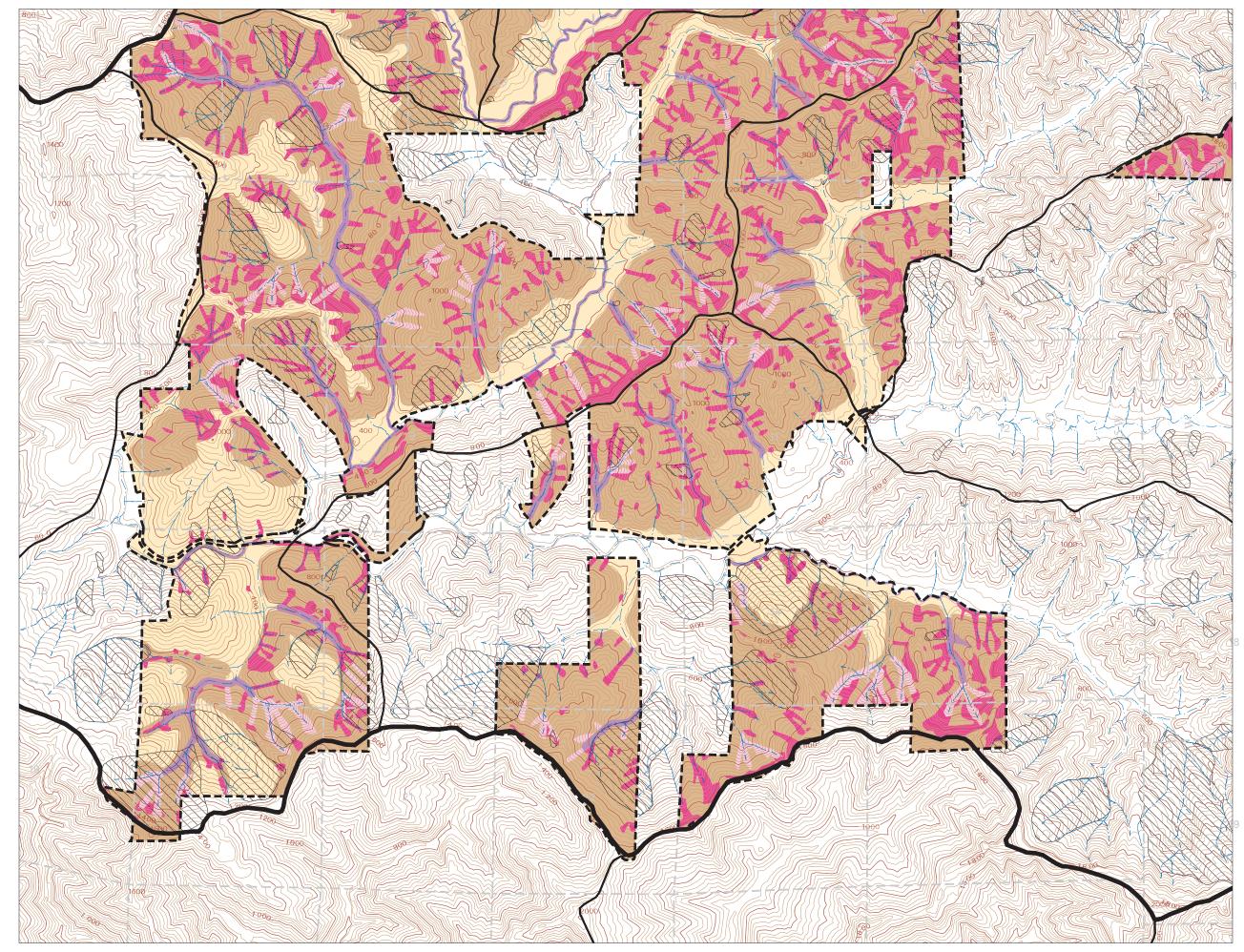
Unit 2: Steep slopes or inner gorge adjacent to select intermittent or ephemeral streams

Unit 3: Steep, dissected topography

Unit 4: Non-dissected topography

Unit 5: Low relief topography


Deep Seated Landslides


Flow Class

 Class I
 Class II
 Class III
 MRC Ownership
 Planning Watershed Boundary

Basin Boundary

Copyright © 2004 Mendocino Redwood Company, LLC

Noyo River Watershed Analysis Unit

Map A-2 . Terrain Stability Units

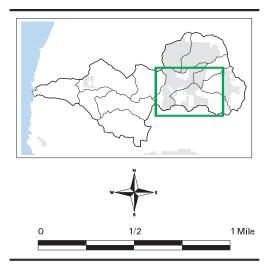
Unit 1: Steep slopes or inner gorge along low gradient watercourses

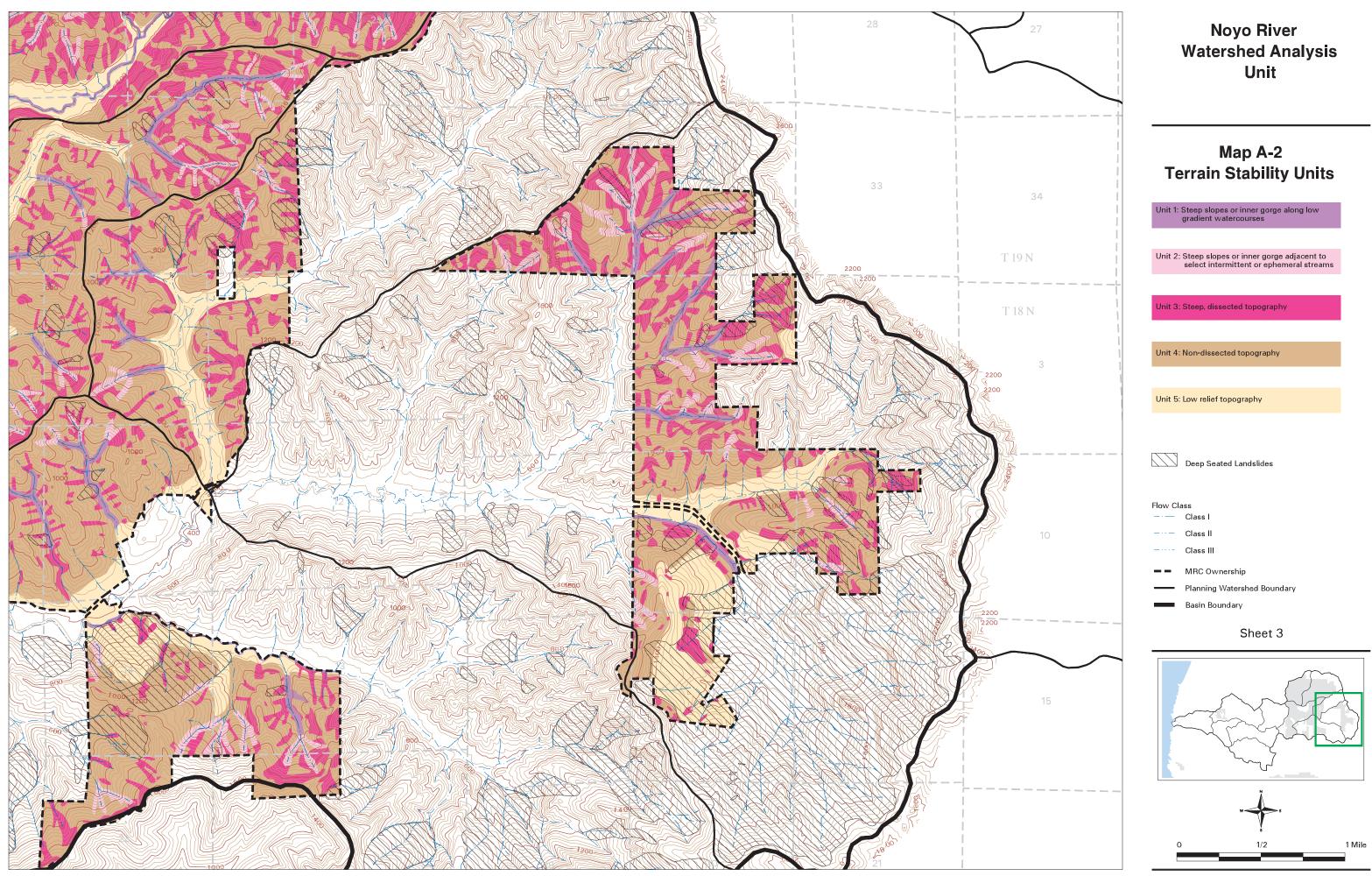
Unit 2: Steep slopes or inner gorge adjacent to select intermittent or ephemeral streams

Unit 3: Steep, dissected topography

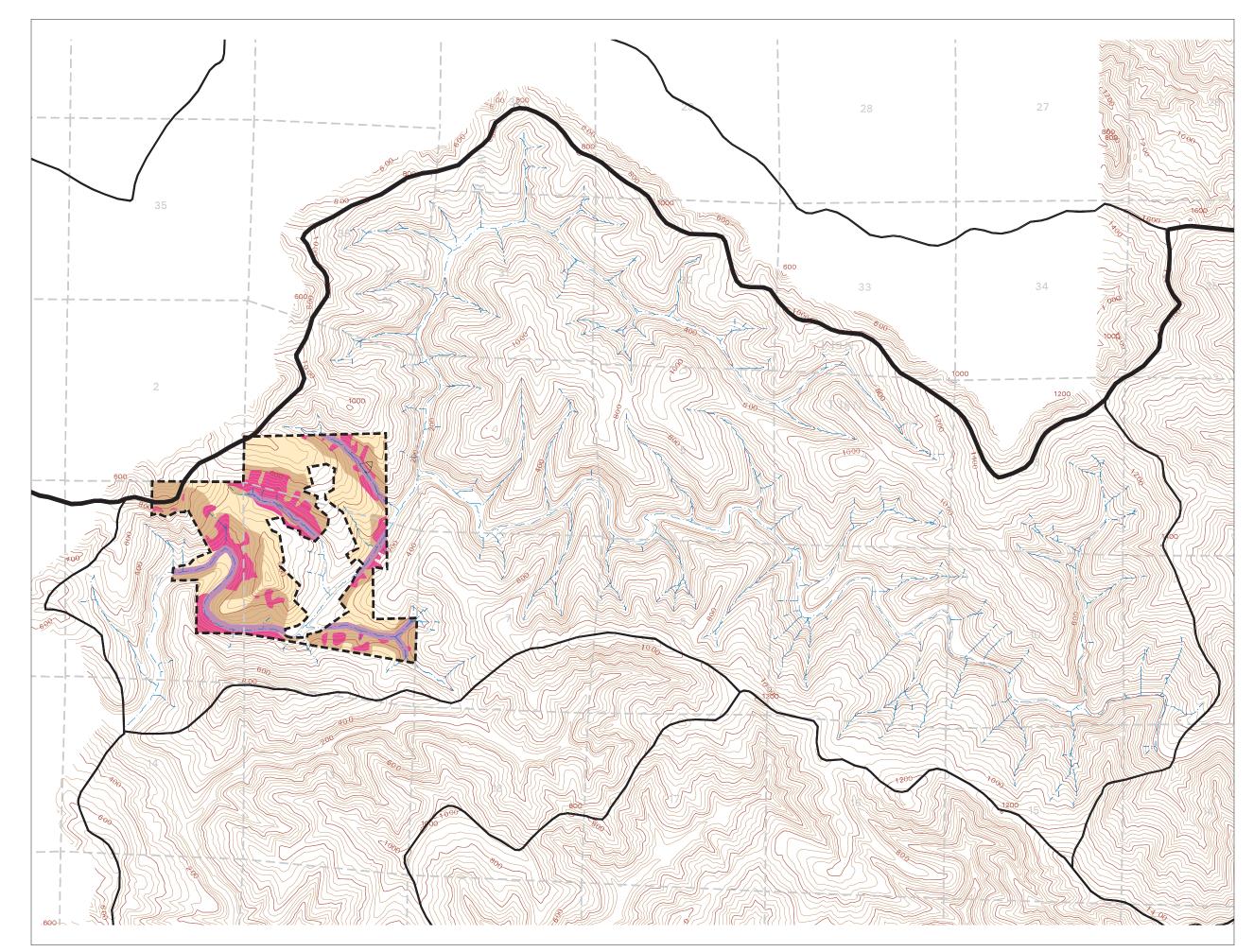
Unit 4: Non-dissected topography

Unit 5: Low relief topography


Deep Seated Landslides


Flow Class

_·	Class I
	Class II
	Class III
	MRC Ownership
	Planning Watershed Boundary


Basin Boundary

March 2004

Map A-2 Terrain Stability Units

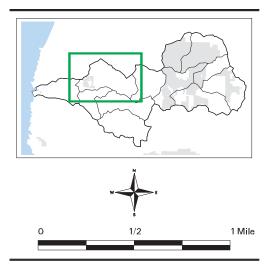
Unit 1: Steep slopes or inner gorge along low gradient watercourses

Unit 2: Steep slopes or inner gorge adjacent to select intermittent or ephemeral streams

Jnit 3: Steep, dissected topography

Unit 4: Non-dissected topography

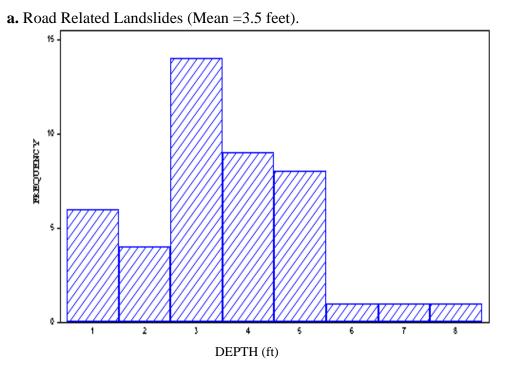
Unit 5: Low relief topography

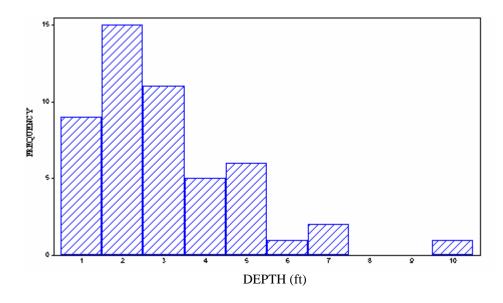

Deep Seated Landslides

Flow Class

_·	Class I
	Class II
	Class III
	MRC Ownership
	Planning Watershed Boundary

Basin Boundary


Sheet 4


Appendix A

Noyo WAU Mass Wasting Assessment

Histograms of Shallow-landslide depths, from field observed landslides.

b. Non-Road Related Landslides (Mean = 3.0 feet).

	Discusion			ndslide Process			01				andslide Si					Quarter and	O damat	O de un	0 dament	0	Sediment Routing		. Min. LOG q/T Comment		
I.D. No.	Planning Watershed	MWMU	,	and Certainty	/ Approx Failure		Slope Gradient				urface Are y photo dat			Avg. Slide	Slide	Sedmnt. Delvry.	Sedmnt. Delvry.	Sedmnt. Delvry.	Delvry.	Sediment Routing		Land Use			
					Date			Photo Yr.			Photo Yr.		96	Depth	Volume		(%)	vol	vol						
10) NN		RS	Type Certaint	у	1	(field)	L	W	Area	L	w	Area	(field)	(cu ft)			(cu yds)	(tons)	Perrenial	Ephem./Int.				
11			RS	Р																					
12	2 NN		RS	Р																					
14			RS	P		70		100	405	16800	400			3.5	58800	V		4704	0004		V				
15			3 DS RS	D		78 00		160	105	16800	160			3.5	58800	Ŷ	81	1764	2381		×		active deep seated landslide		
17	' NN		2 DS	Q		78		100	100	10000	100			3.5	35000	Y	81	1050	1418	6	х	ROAD	-4.154		
18			RS																						
19			RS RS		-																				
23	B NN		RS	Р																					
24	4 NN		RS	P																					
29	NN NN		RS RS	P	_																				
31			3 DS			78		66	132	8712	66			3	26136	Y	81	784	1059	1			-3.286		
32	2 NN		3 DS	Q		78		66	44	2904	66			3	8712	Y	81	261	353	6	Х		-2.341		
34 35 36	4 NN 5 NN		2 DS	D Q		78 78		44 88	110 22	4840 1936	44 88			3	14520 5808		81 0						-2.617 INNER GORGE, MEANDER -2.644		
30	6 NN	-	3 DS 3 DS	Q		78		132	44	5808	132			3	17424	Y	81	523	706		х		-2.644 -3.667		
38	8 NN		3 DS	Q		78		44	22	968	44			3	2904	Y	81	87	118	6	x		-3.397		
39			3 DS			78 78		66 110	22 44					3	4356 14520		81				X X		-2.969		
40	NN NN		3 DS RS	Q		10		110	44	4040	110			3	14520		81	436	588	1	^		-2.709		
46	6 NN		RS	P																					
47	7 NN 3 NN		RS RS														I								
48			RS																						
54	I NN		RS	Р																					
55			RS																						
56	6 NN 8 NN		3 DS 3 DS	Q	-	78 78	85	44 50	22	968 1500	44 50			3	2904 3000		81 81	87 90		X	v		-3.319 OUTSIDE MEANDER -3.194		
59) NN		3 DS	D		78	70	40	30	1200	40			3	3600		0				^		-2.686		
60) NN		RS	P																					
61	NN NN		RS	P																					
62	3 NN		RS 2 DS			78		110	22	2420	110			3	7260	Y	81	218	294		x		-3.684 LOOKS LIKE ROAD ON PHOTO'S		
64	I NN		2 DS	D		78		66	44	2904	66			3	8712	Y	100	323	436	6	X		-3.563		
65			3 DS			78		44	44					3	5808		81				Х		-2.828 HEADWARD EROSION @ HEAD H2O		
66			4 DS RS		-	78		88	44	3872	88		0	3	11616	Ŷ	100	430	581	~			-2.551 TERRACE DELIVERY BY PERENIAL		
68	3 NN		RS	Р																					
72	2 NM		RS RS	P																					
73	3 NM 5 NN		RS	P																					
76			RS	P																					
77	/ NN		RS	P																					
78			RS 3 DS	Q		78		44	22	968	44			3	2904	v	100	108	145	x			-2.287 RIDGE LINE		
81	NN	1	3 DS 3 DS	D		78		110	60	6600	110			3.5	23100	N	0	0	0	(ROAD	-3.006 CUT SLOPE		
82	2 NN		3 DS	P		78		44	44	1936	44			3	5808	N	0						-2.592		
83			3 DS 3 DS	P		78 78		66 110	22 44		66 110			3.5	8470 14520		0					ROAD	-2.831 -25000 MID SLOPE		
85	5 NN		RS	Р				110	44	040	110			3	14520		0								
86	6 NN		RS	P																					
87 90	NN NM		RS RS	P															<u> </u>						
91		1	RS		+								<u> </u>					<u> </u>	<u> </u>	1		<u> </u>			
92	2 NM		RS	P																					
93	NM NM		RS																						
94	NM NM		RS RS	P		_														-					
96	6 NM		RS	P																I					
97	7 NM		3 DS			78		220	44		220			3	29040		81				х		-3.375 SMALL DF ON DLS		
98	B NM	-	3 DS RS	Q		78		154	66	10164	154			3	30492	Ť	81	915	1235	×			-2.411		
100	NM NM	1	RS	Р															1	1					
101	NM		RS	P																					
102			RS RS																						
103			RS			_														-					
105	5 NM		3 DS	Р		78		66	44	2904	66			3	8712	Y	100	323	436	X			-3.005		
106			RS RS	P													I								
107			RS	P																					
100		I	1/2	r									1	I		I	I	1	1	1	1	1			

I.D. No.	Planning MWMU Watershed		e Process d Certainty Approx. Failure	Slope Gradient			(5	andslide Si surface Are y photo da	a)		Avg. Slide	Sedmnt. Slide Delvry.	Sedmnt. Delvry.	Sedmnt. Delvry.	Sedmnt. Delvry.	dmnt. Sediment Routir Ivry.		Assoc. Land Use	Min. LOG q/T	
			Date	(%)	Photo Yr.			Photo Yr.	,	96	Depth	Volume	(%)	vol	vol					
		Туре	Certainty	(field)	L	w	Area	L	w	Area	(field)	(cu ft)		(cu yds)			Ephem./Int.			
110 111	NM 2 NM	DS RS	Q 7	78	66	44	2904	66			3	8712 Y	100	323	436		х		-2.635	
111		RS	P																	
113		RS	P																	
115	NM	RS	P																	
116		RS	P																	
117	NM	RS	P																	
117 118	NM NM	RS RS	P	_																
110		RS	P																	
120		RS	P																	
121	NM	RS	Р																	
122		RS	P																	
123		RS	P																	
124 127		RS RS	P																	
127	NM 3	DS	1	78	220	110	24200	220			3	72600 Y	100	2689	3630	x			-2.965	
129	NM 3	DF	D 50-60	83	3 75	50	3750	75		1	1	3750 Y	100	139	188		х		-3.339	NO SOIL, THIN LAYER 6" COLUVIUM
130	NM 3	DF DS	D 50-60	71		40	6400				2	12800 Y	100	474			Х		-3.256	NO SOIL, THIN LAYER 6" COLUVIUM
131		RS	P	-	1 T			I												
133		RS	P																	
134 135	NM 4	RS DS		78	154	44	6776	154		0	2	20328 Y	100	753	1016	х			-3.298	
135		RS	P		134		0//0	134			3	20020 1	100	100	1010	<u> </u>	1		-0.250	
137	NM 2	DS	D	78	154	110	16940			1	3	50820 Y	100	1882	2541		Х		-3.466	
138	NM 3	DS	P	78	88	44	3872	88		1	3	11616 Y	100	430			Х		-3.675	
139		RS	P																	
140 141	NM NM	RS RS	r D	+	+															
141		RS	P																	
143	NM 3	DS	D 7	78	166	150	24900	166			3	74700 Y	81	2241	3025		х			
145	NM 3	DS	D	78	66	22	1452	66			3	4356 Y	81	131	176	Х			-25000	
146		DS		78	44	22	968	44			3	2904 Y	81	87	118	Х			-2.741	
147		RS	P																	
148 153		RS RS	P																	
154	NM	RS	P																	
155	NM	RS	Р																	
156		RS	P																	
157		RS	P																	
162 163		RS RS	P	_																
164	NO	RS	P																	
169	NO	RS	P																	
176		RS	Р																	
179		DS	Q :	78	110	44	4840	110			3	14520 P	81	436	588	х			-3.441	
180 181		RS DS	P .	78	88	22	1936	88			3.5	6776 N		0	0			ROAD	-2.748	
181	NO 3 NO 3	DS	Q	78	66	22	1936			1	3.5	5082 N	0	0			1	ROAD	-2.748	
186	NO	RS	P					00		1	5.0			Ŭ	Ŭ				1	
187	NO	RS	P							1			1						1	
189		RS	P																	
191 192	NO NO	RS RS	P		<u> </u>					-			-						-	
192	NO	RS	P							-			1						1	
194		DS	P 1	78	88	44	3872	88		1	3	11616 Y	81	348			Х			COULD NOT LOCATE IN FIELD
195	NO 3	DS	P	78	176	22	3872	176			3	11616 Y	81				Х		-2.557	COULD NOT LOCATE IN FIELD
196		DS		78 70		40	3600				5	18000 N	0	0	0				-2.401	
197		DS		78 70		45	6750				4	27000 Y	100				X		-2.934	
199 200	NO 3 NO	DS RS	Q :	78	154	22	3388	154		1	3	10164 Y	84	316	427	1	^		-2.863	
200		RS	P	1						1			1				1		1	
204	NO	RS	P							1			1						1	
209	NO 3	DS	Q	78	30	30	900	30		1	3	2700 Y	81	81	109		Х		-2.814	COULD NOT LOCATE IN FIELD
210	NO 2	RS	P ·	70	000	100	00000	0000			-	60000 1/		0007	0001		v		0.470	
215 273	NO 3 NR 3	DS DS	P 1	78 78	233	100 22	23300			-	3	69900 Y 5808 N	81	2097	2831		^		-3.119	OLD REVEGETADTED CLEAR CUT
273	NR 3	DS		78 110		70	4200			-	4	16800 N	0	0	0			ROAD	-2.171	OLD REVEGETABLED CLEAR COT
277	NR 3	DS		78	242	44	10648			1	3.5		100					ROAD	-3.417	
279	NR	RS	Ρ																	
280	NR	RS RS	P																	
	NR	IKS	P	1	1					1			1	1	1	1	1		1	
281 331	NC 2	DT	D	78	600	140	84000	600				252000 Y	100	9333	12600		V		-25000	

			Landslide Process		1	1			andslide Siz	0										Accor	Min.
I.D.	Planning	муми	and Certainty	Approx.	Slope				surface Area			Avg.		Sedmnt.	Sedmnt.	Sedmnt.	Sedmnt.	Sediment	Routing	Assoc. Land	LOG q/T Comment
No.	Watershed			Failure	Gradient				y photo dat			Slide	Slide	Delvry.	Delvry.	Delvry.	Delvry.	oounion	noung	Use	200 41
	matoroniou			Date		Photo Yr.		78	Photo Yr.	•/	96	Depth	Volume	2011.7.	(%)	vol	vol			000	
			Type Certainty		(field)	L	w	Area	L	w	Area	(field)	(cu ft)		(/0)	(cu yds)		Perrenial	Ephem./Int.	-	
336	NC		RS P		()	_						((22.1)			())	()				
337		F	RS P																		
338		F	RS P			150															
340 341		5 [DS D RS P	78	3	150	60	9000	150		0	3	27000	Ŷ	81	810	1094		x		
363		3 [DT D	78	2	30	88	2640	30			3.5	9240	Y	81	277	374			ROAD	-2.399
364		3 [78		88	22					3.5	6776		0		0,1			ROAD	-3.165
365		F	RS P									0.0					-				
366	NC	3 [78		66	44					3.5	10164		100		508			ROAD	-2.856
368		3 [78	3	110	44	4840	110			3	14520	Y	81	436	588		х		-3.309
369		3 [RS P	78		66	22	1452	66			3.5	5082	N	0	0	0			ROAD	-2.867
370		31	RS P	/0		00	22	1452	00			3.5	5062	IN	0	0	0			RUAD	-2.007
373		3 [78	3	66	22	1452	66			3	4356	Y	100	161	218	х			-2.522 ENTRENCHED MEANDER PATTERN
374		1		78		44						3	2904		100						-2.74 ENTRENCHED MEANDER PATTERN
375		F	RS P																		
376		3 C 3 C	DS D	78	3	350	150		350			3.5	183750		81		7442			ROAD	
377		3 [RS P	78	5	22	88	1936	22			3	5808	Y	81	174	235	х			-2.384
378			RS P RS P	-																	
379		3 [78	3	66	22	1452	66			3	4356	Y	81	131	176		х	1	-3.315
382		3 [78		66						3	4356		81		176		X	1	-3.013
383		3 [DS D	99				0		72	12600	7	88200	Y	10		441		Х	ROAD	INITIATED OFF OF DEEP SEATED SLIDE #16
384		F	RS P		_					-											
387		3 [78		110	44					3	14520		81				х		-2.737 STEEP SLOPE
388 389		3 0	DS P	78	3 70	90 88	40 22					3.5	10800 6776		0		0			ROAD	-2.403 -3.313
390		3 [DS Q	78		44	22					3.5	3388		100				х	ROAD	-2.516
391		F	RS P					000				0.0	0000		100	120	100		~	110/10	2.010
392	NC		RS P																		
393			RS P																		
394			RS P																		
395 409		3 [RS P	78		110	22	2420	110			3.5	8470	N	0	0	0			ROAD	-2.51
405		4 [78			30				0	3.3	9960		100		498		x	ROAD	35000
412		2 [78		132					0	3	17424		100				x	110/10	-3.541 STEEP SLOPE
415	NC	F	RS P																		
416			RS P																		
417		F	RS P																		
418 419		1	RS P DS D	78	2	66	22	1452	66			2	4356	v	100	161	218		v		-2.771
419		3 C 3 C	DS D	78	2	44	22					3	2904		100		210		^		-3.074
421		3 [DS D	78	3	110	22	2420				3	7260		81	218	294	Х			-3.628 STEEP WALL
422		3 [78	3	44	22	968	44			3	2904	Р	81	87	118	Х			-3.284 STEEP WALL
423		F	RS P																		
424			RS P	70				1000					5000		0						0.000
425 426		3 0	DS P	78		44	44					3	5808 14520		0		0				-3.383 -25000
420		3 [DS D	78		100			100		-	3	9000		0					1	-3.452 STEEP CLIFF NEXT TO TERRACE
428	NH	3 [DS D	78	3	100	30	3000	100			3	9000	N	0					1	-3.358 STEEP CLIFF NEXT TO TERRACE
429		3 [DS Q	78		330	66					3	65340		0	0				1	-2.558 STEEP CLIFF NEXT TO TERRACE
430		3 [78	3	88	44	3872	88			3	11616	N	0	0	0				-3.317 STEEP CLIFF NEXT TO TERRACE
431 432		3 [RS P	78	3 90	150	25	3750	150			0	7500	N	0	0	0			-	-2.739
432		3 [78								2	2250		0					1	-2.739 -2.562
434	NH	3 [DS P	78		330					0	3	21780		0					1	-3.164
435	NH	F	RS P																		
436		3 [DS D	78			12	1500				5	7500		100				Х	1	-25000 SEE SLIDE 784
437		3 [3 [DS P	78		132	44				0	3	17424		100		871		Х		-3.988
438 439		3 [RS P	78	8 81	385	240	92400	385			7	646800	Y	100	23956	32340	х			-25000 RUNNOUT OVER VEGETATED
439			RS P		+																
440		F	RS P	1	1															1	
450	NH	1 [DS P	78	3	1			88	22	1936	3	5808	Y	100	215	290		Х	1	
450		F	RS P																		
451		2 [DS D	78	3	L	I	0		44	3872	3.5	13552		0		0			ROAD	-3.229
452		4 [78	5	<u> </u>		0	176	88	15488	3	46464	Y	81	1394	1882		х		-3.296
453 454		3		78	1	110	44	4840	110			3.5	16940	Y	81	508	686		x	ROAD	-4.309 POSIBLE DEBRIS TORRENT
455	NH		RS P	/0		110	44	-040	110			5.5	10340	·	01	500	000		~		
456		F	RS P	1	1		1	1	1							1		1	1	1	
457	NH	F	RS P																		
458 460			RS P																		
	NH	1 31	DT D	78	5	500	250	125000	500			3	375000	Y	100	13889	18750	х	1	1	-25000 LONG PERSISTANT DEEP

	I.D. No.	Planning Watershed	MWMU	Landslide Process and Certainty	Approx. Failure	Slope Gradient			(s	andslide Si surface Are	a)	Avg. Slide	Slide	Sedmnt. Delvry.	Sedmnt. Delvry.	Sedmnt. Delvry.	Sedmnt. Delvry.	Sediment Routing		Assoc. Land Use	Min. LOG q/T	π Comment
	NO.	watersned					Dhata Vr							Delvry.		-				Use		
				Type Certainty				w							(%)			Perrenial	Enhem /Int			
Hole Hole <th< td=""><td>461</td><td>NH</td><td>R</td><td></td><td></td><td>(neid)</td><td>-</td><td></td><td>Alca</td><td>-</td><td></td><td>(neid)</td><td>(cuit)</td><td></td><td></td><td>(cu yus)</td><td>(10113)</td><td>renema</td><td>Epheni./ma</td><td></td><td></td><td></td></th<>	461	NH	R			(neid)	-		Alca	-		(neid)	(cuit)			(cu yus)	(10113)	renema	Epheni./ma			
Horizon Nit																						
Image Mat Sold Sold Sold Sold					78		488	110	53680	488		0	3 161040	Y	100	5964	8052		Х		-25000)
Here No. No. <td></td> <td></td> <td></td> <td></td> <td>70</td> <td></td> <td>44</td> <td>22</td> <td>069</td> <td>44</td> <td></td> <td>2</td> <td>5 2200</td> <td>v</td> <td>100</td> <td>125</td> <td>160</td> <td></td> <td>v</td> <td>POAD</td> <td>2.26</td> <td>1</td>					70		44	22	069	44		2	5 2200	v	100	125	160		v	POAD	2.26	1
41 52<			R	S P	/0		44	22	900	44		3	.5 .3300	T	100	125	109		^	KUAD	-3.204	*
1 0 0 7 7 0					78		66	22	1452	66		3	5 5082	Y	81	152	206		х	ROAD	-2.929	9
1 0 0 7 0 6 2 195 0 25 000 227 000 227 000 0 10 3 0 0 0 10 <td></td>																						
def Nit Disk p Disk Disk <thd< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>DOAD</td><td></td><td></td></thd<>																				DOAD		
400 801 3100 900 1500 900			3 D										5 5082	Ý V								
0.00 0.00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Y</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														Y								
400 NH 305 9 78 67 78 67 78	110		3 D	S P	78		44	22	968			3	5 3388	P	81		137		х	ROAD	-2.505	5
470 HI HB P I <td></td>																						
400 NI BS P NI B P A B P A B P A B P A B P A B B P A B B P A B B P A B B P A B					78	82	210	60	12600	210			3 37800	N	0	0	0	х			-25000	SHALSTAB RED
Hole No. No. <td></td>																						
Hole NI JOT D Tele Set Do Set			R	S P																		
Hole Hole <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																						
486 NH BS P N N N N N N N N N N N N N N N A N <td></td> <td></td> <td></td> <td></td> <td>78</td> <td></td> <td>55</td> <td>110</td> <td>6050</td> <td>55</td> <td></td> <td>3</td> <td>5 21175</td> <td>Y</td> <td>81</td> <td>635</td> <td>858</td> <td>х</td> <td></td> <td>ROAD</td> <td>-3.044</td> <td>1</td>					78		55	110	6050	55		3	5 21175	Y	81	635	858	х		ROAD	-3.044	1
off NH RS P RS P RS RS P RS P RS RS <td></td> <td>-</td> <td></td>												-										
S10 NI 468 P TR 66 2 162 NI NI NI NI All					1																1	
Sing Mil 4058 P 76 66 72 142 66 75 56 Mil 80 72 266 X 8000 2234 617 NH 1058 P 76 64 22 466 44 2 35 58384 100 156 169 X R040 2.346 561 NH 3058 P 78 22 444 2 35 6894 100 158 189 X R040 3.344 563 NH 3058 P 78 88 2 156 767 81 214 X R040 3.344 563 NH R68 P 78 45 2 156 1578 168 187 188 X 9.3 2345 181 181 181 X 9.3 2346 563 NH 305 0 958 4355 1503 1103<	512	NH	4 D	S P	78		66	22	1452	66		0	3 4356	Y	100	161	218		х		-2.405	5
155 NH 185 P T C <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>					1																	
International state No.					78		66	22	1452	66		0 3	5 5082	P	81	152	206		х	ROAD	-2.224	1
101 NH 108 P 72 44 22 988 44 35 3884 00 125 199 X R0A0 4.583 153 NH 108 P 72 22 24.84 22 135 3894 101 125 X R0A0 4.584 153 NH 85 P 0 10					78		66	22	1452	66		3	5 5082	N	0	0	0			ROAD	-2 464	1
Sol NH 365 P 78 88 22 1936 88 75 676 Y 81 200 774 X ROAD 2.24 520 NH 85. P - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5 3388</td><td>Y</td><td></td><td></td><td></td><td></td><td>х</td><td></td><td></td><td></td></t<>													5 3388	Y					х			
Sol NH RS P C <td>518</td> <td>NH</td> <td>3 D</td> <td>S P</td> <td>78</td> <td></td> <td>22</td> <td></td> <td>484</td> <td>22</td> <td></td> <td>3</td> <td>5 1694</td> <td></td> <td>100</td> <td>63</td> <td>85</td> <td></td> <td></td> <td>ROAD</td> <td>-3.684</td> <td>1</td>	518	NH	3 D	S P	78		22		484	22		3	5 1694		100	63	85			ROAD	-3.684	1
Image: Solution of the state of th					78		88	22	1936	88		3	.5 6776	Y	81	203	274		Х	ROAD	-2.84	1
S20 NH R5 P - - - - <td></td>																						
128 NH 208 P 78 66 22 142 66 0 3 2050 87 131 176 X - 2.73 528 NH 2058 P 77 H 2 968 4 0 3 201 87 110 X - 3.48 528 NN 3058 0 96 0 0 3 48 158 133 176 N 0																						
Sec NH 2 DS P 78 44 22 98 44 0 3 200 V 81 67 118 X	524				78		66	22	1452	66			3 4356	Y	81	131	176		х		-2.754	1
158 NM 3 [05] Q 96 0 90 0 0 0 0 0 ROAD 73.45 Land 539 NN 3 [07] D 96 0 63 46 1543 1752 N 0 0 0 2.469 Dessite 2.469 Dessite 2.469 Dessite 2.469 Dessite 2.461 D	525	NH	2 D	S P	78		44					0	3 2904	Y					Х			
158 NN 3 DS 0 96 0 33 44 1564 3 4752 N 0 0 0 2486 DELVERY TO TERRACE 531 NN 3 DS 0 96 0 83 50 1362 N 0 0 0 2486 DELVERY TO TERRACE 531 NN 3 DS 0 96 0 83 524 N 0 0 0 2486 DELVERY TO TERRACE 535 NN 3 DS 0 96 0 83 526 N 0 0 0 0 0 0 0 0 2486 DELVERY TO TERRACE 538 NM 3 DS 0 96 0 86 5478 3 1950 N 0																						
S50 NN 3 DT D 96 0 83 750 11 2460 N 0 0 0 2149 POSSBLE DEBNIS TORRENT S32 NN 3 DS D 96 4 4668 3 7200 N 0 0 - -3.665 DELINY TO TERRACE S35 NN 3 DS D 96 - 0 86 3 7200 N 0 0 - -3.665 DELINY TO TERRACE S35 NM 4 DS D 96 - 0 732 5770 V 10 191 2588 X - -2.86 S36 NO 3 DS D 96 90 0 66 33 2560 N 0 0 0 0 - 2.86 - 2.80 - 2.86 - 2.86 - 2.86 - 2.86 - 2.86 - 2.86 -																				ROAD		
S52 NN 3DS D 96 0 96 44 4608 3 1324 N 0 0 0																					-2.400	POSSIBI E DEBRIS TORRENT
S58 NM 3 DS 0 96 0 16434 N 0 0 0 X 3.066 536 NM 4 DS 0 96 0 133 338 131677 V 81 395 533 X -2.167 538 NO 3 DS 0 96 0 72 66 4320 3 1536 NO 0 0 0 ROAD -2.38 538 NO 3 DS 0 96 90 0 65 40 2600 3 7800 N 0 0 0 7.260 7.260 540 NN 3 DS 0 96 70 0 68 1224 2 2448 N 0 0 0 2.850 2.21 X 2.265 2.265													3 13824	N								
558 NM 4 (DS 0 96 0 213 33 33 4 386 3 1367 / Y 81 395 533 X -2.167 537 NM 4 (DS 0 96 78 0 224 80 17500 / N 0 0 0 ROAD -2.63 538 NO 3 (DS 0 96 90 0 66 40 260 3 7500 / N 0 0 0 ROAD -2.63 541 NO 4 (DS 0 96 0 66 18 124 2.448 / N 0 0 0 -2.685 SLOPE REAK 543 NO 3 (DS 0 96 72 0 80 3 220 / N 0 0 0 -2.685 SLOPE REAK -2.389 SLEPE TOPGORAPHY 544 NO 3 (DS 0 96 75 0 50 25 1250 / N 0			3 D	S D	96												0					
S57 NM 4 (DS D 96 0 0 724 80 17920 3 53760 [Y 100 1991 2888 [X -2.98 558 NO 3 (DS 0 96 90 0 66 40 2600 3 1290 [N 0 0 0 ROAD -2.63 540 NN 3 (DS 0 96 0 0 80 33 2940 [N 0 0 0 0 4.63 3000 [N 0 0 0 -2.685 [SLOFE BREAK 542 NO 3 (DS 0 96 0 46 920 [N 0 0 0 -2.685 [SLOFE BREAK -2.385 [SLOFE DOCARPHY 544 NO 3 (DS 0 96 0 46 500 [S1 (D7 (P OCARPHY) 81 2.38 321 X -2.385 [SLOFE DOCARPHY 544 NO 3 (DS 0 96 1 920 [N 1 820 [N 1<			3 D	S D																		
538 NO 3 DS D 96 78 O 72 60 4320 3 12960 N 0 0 ROAD 7-263 539 NO 3 DS D 96 0 650 3 7800 N 0 0 0 0 0 2.168 541 NO 4 DS D 96 0 681 1224 2.2448 N 0 0 0 0 2.168 541 NO 3 DS D 96 0 641 20 320 N 0 0 0 0 2.2695 2.500 P 543 NO 3 DS D 96 72 0 90 60 540 3 7200 N 0 0 0 ROAD 2.2695 S050 P 2.2695 S050 P 2.2663 S050 P 2.2663 S050 P 2.2663 S050 P 3.3 2240 3 3.6633 N 0 0 0 0 0 <td></td> <td>~</td> <td></td> <td></td> <td></td>																			~			
539 NO 3 DS D 96 0 65 40 2000 3 7800 N 0 0 CO 3000 -2.186 540 NN 40 DS D 96 0 66 18 12.24 2.444 N 0 0 0 -2.186 542 NO 3 DS D 96 0 0.46 20 1.920 V 81 238 321 X -2.305 SLPE BREAK 544 NO 3 DS D 96 0 0.46 2.090 V 81 238 321 X -2.305 SLPE BREAK 544 NO 3 DS D 96 75 0 500 25 1250 V 81 238 324 X ROAD -2.406 ANABLE D.UT 544 NO 3 DS D 96 75 0 30 221 550 V 81 223 33 X ROAD -3.248 549 NO																0	2000	~		ROAD		
541 NO 4 [DS D 96 70 0 66 18 124 2 2448 N 0 0 0 3500 542 NO 3 [DS D 96 0 0 66 2920 N 1 920 N 0 0 0 -2.309 [STEP TOPOGRAPHY 544 NO 3 [DS D 96 72 0 90 60 540 N 0			3 D	S D		90				65	40 26				0	0	0			ROAD	-3.07	BELOW ROAD
542 NO 3 DS P 96 0 46 20 920 1 920 N 0 0 0 -2685 SLOPE BREAK 543 NO 3 DS D 96 72 0 90 66 5400 3 7201 Y 811 238 321 X C-309 STEP TOPOGRAPHY 546 NO 3 DS D 96 75 0 550 7 8750 Y 811 283 354 X ROAD -2165 ROAD WASHED OUT 546 NO 3 DS D 96 75 0 30 25 750 7 5250 N 0 0 0 0 2433 2440 X ROAD -3288 550 3875 Y 131 35 7735 Y 101 322 131 X 244 x 4467 4467 4467 4467 4467 4467 4467 4467 4467 4467 4467 4467			3 D	S D	96		<u> </u>										0					
543 NO 3 DS D 96 0 80 33 2840 3 7920 [Y 81 238 321 X 2.308 [STEP TOPOGRAPHY] 544 NO 3 DS D 96 75 0 50 25 1250 7 8750 [Y 81 263 354 X ROAD 2.468 ROAD WASHED OUT 547 NO 3 DS D 96 75 0 30 25 750 7 8750 [Y 81 263 354 X ROAD 2.2684 548 NO 3 DS P 96 0 67 33 2211 3 633 N 0 0 0 0 2.2500 548 NO 3 DS D 96 0 67 33 2211 3.5 7738.5 Y 81 232 313 X 3.376 563 NC 3 DS D 96 0 1			4 D													0	0					
544 NO 3 D 96 72 0 90 60 5400 3 18200 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.165 ROAD -2.268 ADD WASHED OUT 547 NO 3 DS D 96 75 0 30 25 750 7 5250 N 0 0 0 3.433 548 NO 3 DS P 96 0 67 33 2211 3 6613 1883 N 0 0 0 -3.238 580 NN 1 DS P 96 0 67 33 2211 3.5 7736.5 18 232 313 X -3.238 590 NN 1 DS D 96 0 50 16 800 3.5 2800 Y 81<						60													х			
546 NO 3 DS D 96 75 0 550 750 7 8750 Y 81 283 354 X ROAD -2.664 547 NO 3 DS P 96 0 0 25 750 7 5250 N 0 0 0 0 -3.433 548 NO 3 DS P 96 0 17 33 551 3 6633 N 0 0 0 -2500 549 NO 3 DS P 96 0 17 17 289 3 667 Y 81 232 313 X -3.876 590 NN 1 DS P 96 0 17 17 289 3 667 Y 100 32 44 x -4.467 612 NH 3 DS P 96 0 50 16 800 3.5 2800 Y 81 131 X ROAD -3.237 COULD NOT LOCATE IN FIELD 613 NH 3 DS P 96 0 </td <td>544</td> <td>NO</td> <td>3 D</td> <td>S D</td> <td>96</td> <td></td> <td></td> <td></td> <td>0</td> <td>90</td> <td>60 54</td> <td>00</td> <td>3 16200</td> <td>N</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td>-2.165</td> <td>5 ROAD WASHED OUT</td>	544	NO	3 D	S D	96				0	90	60 54	00	3 16200	N	0	0	0				-2.165	5 ROAD WASHED OUT
548 NO 3 DS P 96 0 67 33 211 3 6633 N 0 0 0 -2500 549 NO 3 DS P 96 0 17 33 561 3 1683 N 0 0 0 -3.288 583 NC 3 DS P 96 0 67 33 2211 3.5 7738.5 Y 81 232 313 X -3.876 590 NN 1 DS P 96 0 67 33 2211 3.5 7738.5 Y 81 232 313 X -3.876 612 NH 3 DS P 96 0 50 16 800 3.5 2800 Y 81 41 x ROAD -3.237 COULD NOT LOCATE IN FIELD 613 NH 3 DS P 96 0 17 67 1139 3 3417 Y 81 23 31 <td></td> <td>7 8750</td> <td>Y</td> <td></td> <td></td> <td>354</td> <td> </td> <td>х</td> <td>ROAD</td> <td>-2.664</td> <td>1</td>													7 8750	Y			354		х	ROAD	-2.664	1
549 NO 3 DS P 96 0 17 33 561 3 1683 N 0 0 0			3 D	D D	96	75					25 7						0				-3.433	5
583 NC 3 DS 0 96 0 67 33 2211 3.6 7738.5 Y 81 222 313 X 3.876 590 NN 1DS P 96 17 17 280 3.867 Y 100 32 44x -4.467 612 NH 3 DS D 96 0 50 16 800 3.5 2800 Y 81 84 113 X ROAD -3.327 COULD NOT LOCATE IN FIELD 613 NH 3 DS D 96 0 50 16 800 3.5 2800 N 0 0 ROAD -3.327 COULD NOT LOCATE IN FIELD 615 NH 2 DS D 96 0 17 67 1139 3.417 Y 81 103 188 X -3.386 618 NH 1DS Q 96 0 16 162 3 768 Y 81 23 31							<u>├</u> ──										0			<u> </u>		
590 NN 1 DS P 96 17 17 289 3 887 Y 100 32 44 x A -4467 612 NH 3 DS D 96 0 50 16 800 3.5 2800 Y 81 84 113 X ROAD -3.327 COULO NOT LOCATE IN FIELD 613 NH 3 DS P 96 0 50 16 800 3.5 2800 N 0 0 0 ROAD -2.551 615 NH 2 DS D 96 0 17 67 1139 3.417 Y 81 103 138 X -2.500 618 NH 1 DS Q 96 0 16 16 256 3 768 Y 81 23 31 X -2.454 (COULD NOT LOCATE IN FIELD 620 NH 1 DS D 96 0 32 16 512 3 136 Y 1																			х			
612 NH 3 DS D 96 0 50 16 800 3.5 2800 Y 81 84 113 X ROAD -3.327 (DOULD NOT LOCATE IN FIELD 613 NH 3 DS P 96 0 50 16 800 3.5 2800 IV 0 0 0 ROAD -3.327 (DOULD NOT LOCATE IN FIELD 615 NH 2 DS D 96 0 17 67 1138 3 3417 Y 81 103 138 X -2500 618 NH 1 DS Q 96 0 16 16 256 3 768 Y 81 23 31 X -2454 COULD NOT LOCATE IN FIELD 619 NH 3 DS Q 96 0 16 16 256 3 768 Y 81 23 31 X -2454 COULD NOT LOCATE IN FIELD 620 NH 1 DS D 96 0 1512	590	NN	1 D	S P	96					17	17 2	89	3 867	Y	100	32	44	x			-4.467	7
615 NH 2 DS D 96 0 17 67 1139 3 3417 Y 81 103 138 X 25000 618 NH 1 DS Q 96 16 16 266 3 768 Y 81 23 31 X -3.908 619 NH 3 DS P 96 0 16 16 256 3 768 Y 81 23 31 X -2.454 (COUL NOT LOCATE IN FIELD 620 NH 1 DS D 96 98 60 25 1500 2 3000 Y 100 111 150 X -2.454 (COUL NOT LOCATE IN FIELD 622 NH 3 DS Q 96 0 32 16 512 3 1536 N 0 0 0 -3.4543 623 NH 3 DS QQ 96 0 50 16 800 3 1400 Y 10 53 720 X	612	NH	3 D	S D						50	16 8	00 3	5 2800	Y	81				х		-3.327	COULD NOT LOCATE IN FIELD
618 NH 1 DS Q 96 16 16 26 3 768 Y 81 23 31 X -3.968 619 NH 3 DS P 96 0 16 16 256 3 768 Y 81 23 31 X -3.968 620 NH 1 DS D 96 98 60 25 1500 2 3001 Y 100 111 150 X -2.545 (COLUDAT LOCATE IN FIELD 622 NH 3 DS Q 96 0 32 16 512 3 1536 IV 100 57 77 X -5.453 623 NH 3 DS QQ 96 0 32 16 512 3 1536 IV 10 57 77 X -5.453 623 NH 4 DS P 96 0 50 400 3 14400 Y <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td> </td> <td></td> <td>50</td> <td>16 8</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td> </td> <td>v</td> <td>ROAD</td> <td></td> <td></td>							<u> </u>			50	16 8					0	0		v	ROAD		
619 NH 3 DS P 96 0 16 16 266 3 768 Y 81 23 31 X -2.454 [OOUL NOT LOCATE IN FIELD 620 NH 1 DS D 96 98 60 25 1500 2 300 Y 100 111 150 X 3500 INNER GORGE, LOG JAM 622 NH 3 DS Q 96 0 32 16 512 3 1336 Y 100 57 77 X -5.453 623 NH 3 DS QQ 96 0 32 16 512 3 1536 N 0 0 0 -3.362 627 NH 4 DS P 96 0 50 1600 3 2400 Y 100 53 720 X -5.592 660 NC 3 DS D 96 0 160 33 5280 3 15840 Y 100 587 792 X </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>									0													
620 NH 1 DS D 96 98 60 25 1500 2 3000 Y 100 111 150 × 55000 10NRER GORGE, LOG JAM 622 NH 3 DS O 96 0 32 16 512 3 1536 Y 100 57 77 X <									0													
662 NH 3 DS Q 96 0 32 16 512 3 1536 Y 100 57 77 X 5-453 623 NH 3 DS QQ 96 0 32 16 512 3 1536 Y 100 57 77 X 5-453 627 NH 4 DS P 96 0 52 1536 N 0 0 0 -3.362 627 NH 4 DS P 96 0 50 16 800 3 2400 Y 81 72 97 X -25000 636 NH 2 DS D 96 0 96 3 1400 Y 100 533 720 X -5.192 660 NC 3 DS D 96 0 160 33 5280 3 15840 Y 100 537 792 X ROAD -25000 662 NC	620	NH	1 D	S D	96	98				60	25 15	00	2 3000	Y	100	111	150	Х			35000	INNER GORGE, LOG JAM
627 NH 4 DS P 96 0 50 16 800 3 2400 Y 81 72 97 X 25000 636 NH 2 DS D 96 0 96 50 4800 3 14400 Y 100 533 720 X -5.192 660 NC 3 DS D 96 0 160 233 5280 3 15840 Y 100 537 792 X ROAD -25000 662 NC 2 DS D 96 95 0 40 60 2400 Y 100 537 792 X ROAD -25000 662 NC 2 DS D 96 95 0 40 60 2400 2 4800 N 0 0 0 -3.125 ROCKFALL AVALANCHE 664 NC 3 DS D 96 0	622	NH	3 D	S Q	96					32	16 5	12	3 1536	Y	100				х		-5.453	3
666 NL 2 DS D 96 0 96 50 4800 3 1400 Y 100 533 720 X -5.192 660 NC 3 DS D 96 0 160 33 5280 3 15840 Y 100 587 792 X ROAD -5.192 662 NC 2 DS D 96 95 0 40 60 2400 2 4800 N 0 0 - -3.125 ROCKFALL AVALANCHE 663 NC 3 DS Q.P 96 72 0 40 18 720 Y 100 27 38/X - -2.476 664 NC 3 DS D 96 0 663 3 6334 Y 191 100 27 38/X - -2.476 664 NC 3 DS D 96 0 663 33 6534 Y 191 100 26			3 D	S QQ												0	0		V.			
660 NC 3 DS D 96 0 160 33 5280 3 15840 Y 100 587 792 X ROAD -25000 662 NC 2 DS D 96 95 0 40 60 2400 N 0 0 0 -3.125 ROCKFALL AVALANCHE 663 NC 3 DS Q-P 96 72 0 40 18 720 1 720 Y 100 27 36 X -2.476 664 NC 3 DS D 96 0 666 33 2178 3 6534 Y 100 265 X -3.405 HEAVILY LOGGED			4 D																			
662 NC 2 [DS D 96 95 0 40 60 2400 2 4800 [N 0 0 0 -3.125 [ROCKFALL AVALANCHE 663 NC 3 [DS Q-P 96 72 0 40 18 720 [Y 100 27 36 [X -2.476 [664 NC 3 [DS D 96 0 666 33 2178 [S 6534]Y 81 196 265 X -3.405 [HEA/ILY LOGGED																				ROAD		
663 NC 3 DS Q-P 96 72 0 40 18 720 1 720 Y 100 27 36 X -2.476 664 NC 3 DS D 96 0 66 33 2178 3 6534 Y 81 196 265 X -3.405 HEAVILY LOGGED	662	NC	2 D	S D	96	95			-	40	60 24	00	2 4800	N	0	0	0					
	663	NC	3 D	S Q-P		72				40	18 7	20	1 720								-2.476	5
L 1001 NULL ZIUS IUL I 901 /51 I I 01 401 681 27201 31 81601Y I 1001 3021 4081X I I -3.7051HEAVILLYLOGGED INNER GORGE														Y					Х			
000 NC 2 05 50 73 0 40 00 2720 3 01001 100 302 400 Å 5.700 filtewith CONSE 666 NC 41DS D 96 90 0 88 35 3080 3 92401/Y 100 342 4621X -2.619	665				96	75							3 8160			302						

			Landslide Process					L	andslide Size.											Assoc.	Min.
I.D.	Planning	MWMU	and Certainty	Approx.	Slope	(surface Area)						Avg.		Sedmnt.	Sedmnt.	Sedmnt.	Sedmnt.	Sediment	Routing	Land	LOG q/T Comment
No.	Watershed			Failure	Gradient				by photo date)			Slide	Slide	Delvry.	Delvry.	Delvry.	Delvry.			Use	
		_	Turne Oratelate	Date		Photo Yr.		78	Photo Yr.	14/	96	Depth	Volume		(%)	vol	vol	Description	Entran Ant		
667	NC	1 0	Type Certainty	96	(field)	L	w	Area	L 33	W 33	Area 1089	(field)	(cu ft) 3 3267	Y	100	(cu yds) 121	(tons) 163		Ephem./Int.		-4.785
671		4 C	DS Q	96				(16	256		3 768		81	23					-2.389
672		3 [96				(25	1000	2	2 2000		100				Х		-2.858
674 707		3 C 3 C		96				(15 44	480 5808		3 1440 3 17424		100	0 645	0 871				-2.333 -2.931
713		3 0	DS D	96						66	12078	3.5	5 42273		100	1566	2114		х	ROAD	-4.163
716		3 0	DS P	96				(16	1056	3.5	5 3696	N	0	0	0			ROAD	-25000
719		3 [96				(60	7980		3 23940		100				Х		-4.25 MAP CONVERSION
720		3 C 3 C		96				(50 50	6600 6600		3 19800 3 19800		100		990		X		-2.886 MAP CONVERSION -2.788 MAP CONVERSION
722		3 0	DS P	96				0		50	6600		3 19800		100		990		X		-2.874 MAP CONVERSION
728		4 0		96				(33	1089		3 3267		81		132		Х		35000
729 731		3 C 4 C		96				(00	30 33	1500 2739		5 7500 3 8217		0	0	333			ROAD	-2.289 35000 COULD NOT LOCATE IN FIELD
732		3 0		96				(18	756		2 1512		100				х		-2.611
733		3 C		96				(16	528	3.5	5 1848		0		0			ROAD	-3.044
734		3 [96				(33	2739	3.5			81		388			ROAD	-2.503
736		1 C 3 C	DS D	96				(83	33 16	2739 256		3 8217 3 768		81		336			<u> </u>	-2.517 MIDSLOPE -2.384
738	NN	3 E	DS Q	96	6			() 16	16	256		3 768	N	0	0	0				-3.007
739		3 [96				(16	256	-	3 768		0						35000
740 741		3 C 3 C	DS Q	96				(16 16	256 528		3 768 3 1584		0	0	0			<u> </u>	35000 -2.583
741		3 0	DS P	96	6			(33	16	528		3 1584		0	0				<u> </u>	-2.565
744	NN	3 0	DS P	96	6			(0 16	16	256	3.5	5 896	N	0	0	0			ROAD	-3.755
745		2 [96				(48	3840		3 11520		0	0	0				-2.557
747		2 C 1 C	DS P	96				(0 40 16	25 16	1000 256		3 3000 3 768		100 100						-3.694 INNER GORGE -2.713
749		1 0		96	5				16	16	256		3 768		100	28	39				-2.422 INNER GORGE
750		1 [DS D	96					60	35	2100	3	3 6300		100	233	319				-25000 INNER GORGE
751 753		1 C 3 C		96				(33	16 16	528 528		3 1584 3 1584		100 81				v		-4.487 INNER GORGE -3.115
753		3 0		96				(33	528 1089		3 1584		100				X		-2.958
757	NN	3 [DS P	96	i			(66	48	3168		3 9504	N	0	0	0				-3.124
759		3 0	D D	96	5 72			0		80	18400	10			100		9200		Х		-3.381 SHALSTAB RED
759a 760		3 [os Q	96				(250 0 16	5 16	1250 256		5 6250 3 768		100 100	231 28	313		X X		RUNOUT FROM 759, SEE ALSO 1152
761		1 0	DS D	96					80	32	2560		3 7680		100				X		-3.2
762		2 [96				(16	512	3.5			100				Х	ROAD	-4.232
763 765		4 C 3 C	DS Q	96				(16 30	256 1050	3.5	5 896 1 1050	N	0	0 32	0 43		v	ROAD ROAD	-2.635 -2.499
768		4 0		96				(50	33	1650	3.5			0	0			^	ROAD	35000
769	NM	4 0	DS Q	96	6			() 32	16	512	3	3 1536	N	0	0	0				35000
770		3 [96				(16	768		3 2304		0						-2.151
771		3 C 1 C		96				(32	16 16	512 528		3 1536 3 1584		0	0 59					-2.475 -4.173
773		3 0	DS D	78		154	110	16940		0	020		3 50820		100	1882			х		
774		2 [DS Q	96	6			(16	512	3	3 1536		100	57	77				-3.501
780 782		3 E 3 E		96				(16 32	1328 1024	3.5 3.5	5 4648 5 3584		81 81		188 145		X	ROAD ROAD	-2.566 -3.722
782		3 [96				(32	4000	3.5	2 8000		81				X	NUAD	-3.722 -2.437 SCARP MIGRATION OF SLIDE 436
785	NH	2 [DS D	96	5 75			(38	25	950	2	2 1900	Y	100	70	95		x		-3.114
786		2 [96		T		(33	1089	\$	3 3267		81		132		х		-3.09 COULD NOT LOCATE IN FIELD
787		2 C 3 C	DS P	96				(33 33	561 561	3	3 1683 3 1683		0	0 62	0				-2.26
816		3 0		96				(33	2739	3.5			100					ROAD	-2.498
817		3 [96				(16	256	3	3 768		81				Х		-2.033
818 820		3 0		96				(16	528 6600		3 1584 3 19800		0 81		0			<u> </u>	-3.384 -2.334 MAP CONVERSION
820		4 C 1 C		96					100	66 16	6600 256	3.5			81	594	802		х	ROAD	-2.334 MAP CONVERSION 35000 COULDN'T LOCATE IN FIELD
822	NO	1 0	DS D	96	60				48	20	960	2	2 1920	Y	100	71	96		X		-2.641 VERY QUESTIONABLE
823		2 [96				(16	256	1	3 768		81	23			Х		-2.918 CABLEYARD PARTIAL CUT
824 825		3 C 1 C		96				(16	16 33	256 3300	3.5	5 896 3 9900		81 81				X X	ROAD	-2.896 -2.798
826		2 0		96				(16	800	3.5			81		113		x	ROAD	-3.134
827	NO	3 [DT D	96	6			(66	33	2178	3.5	5 7623	Р	81	229	309		Х	ROAD	35000 POSSIBLE DT
829		3 [96		L – 1		(16	768		3 2304		0	0	0			BOAD	-2.349
830 830a		3 [D D	96	90			0	24	40 16	960 2560		3 2880 3 7680		0		0		x	ROAD	-2.141 RUNNOUT FROM 830
831		3 0	DS D	96	68			(19	1007	1	1 1007	Ү	81				X		-2.114 SLOPE BREAK
832	NO	4 C	DS D	96				(0 80	20	1600	3	3 4800		0	0	0				35000
	NO	2 [96				(67	1139	3	3 3417		100	127	171		х	L	-3.677 COULD NOT LOCATE IN FIELD
835 836		3 E	DS P	96				0) 16	16	256		3 768		0	0	0				-2.947 STEEP TOPOGRAPHY

			Landslide	Process					L	andslide Siz	e										Assoc.	Min.	
I.D.	Planning	MWMU	and Certainty		Approx.	Slope	(surface Area)						Avg.		Sedmnt.	Sedmnt.	Sedmnt.	Sedmnt.	Sediment	Routing	Land	LOG q/T	Comment
No.	Watershed				Failure	Gradient			(b	y photo dat	e)		Slide	Slide	Delvry.	Delvry.	Delvry.	Delvry.			Use		
					Date	(%)	Photo Yr.		78	Photo Yr.		96	Depth	Volume		(%)	vol	vol					
				Certainty		(field)	L	w	Area	L	W	Area	(field)	(cu ft)			(cu yds)	(tons)		Ephem./Int.			
838 839	NO NO		DS DS	P	96 96					100	66 16		3.5	19800 2688		100	733	990	X		ROAD	-2.508	MAP CONVERSION
841	NR			Q	96				0		67		3.5			81	103	138		х	RUAD	-2.993	
842	NR			p	96				0		50		3.5			0		0		~	ROAD	-3.003	
843	NR	5	DS	Р	96				0		50		3	2550		0						-2.251	
845	NM			D	98				0		16		3.5			81				х	ROAD		PARTIALLY REVEGETATED
846	NH	3	03	P	96				0	00	16		3			81 81				X			COULD NOT LOCATE IN FIELD
847 1000	NH NC		DS	P	96 78		200	150	30000		16	256	3			100				X		-25000	COULD NOT LOCATE IN FIELD STREAMSIDE
1000	NU			Q	96		200	150	00000	100	40		3			100	0	4300					CONVERGENT
1002	NU	1	DS	P	96					120	80		3.5			100	1244	1680	Х		ROAD		
1003	NU	4	DT	Q	96				0	500	25		3.5			81				Х	ROAD		
1103a	NR	-	D0	0	96					300	15		3.5			100				X X	DOAD		
1004 1104a	NU NR	5	DS	P	96				0	100 200	80 32		3.5			100		1400		X	ROAD		
10044	NU		RS	Р	96					200	32	0-100		0	•	100	,,,,	300	1	· ·	1	1	DORMANT
1006	NU		DS	Q	96				0		30		3				0	0				1	
1007	NU			D	96				0	LLO	100		3			100							INSIDE OF MEANDER BEND
1008	NU			D	96				0		45		3.5			81				x	ROAD	0/0	
1101 1102	NH NC		DS DS	P	98 98				0	44	22 22		3			81 81				X	+	n/a n/a	
1102	NR			D	98				0		45					81				X		n/a	RUNNOUT 300x15x3', OVER ROAD
1104	NR			D	98				0		45		5			0				X		n/a	RUNNOUT 200x32x3', OVER ROAD
1105	NC			D	98				0		16		3	1584		0		0	ſ			n/a	
1106	NO			D	98				0		44		3	7920		0		0			ROAD	n/a	
1107 1108	NO NO			D	98 98			68	6120		60	9000	4			100 100				X	ROAD ROAD	n/a n/a	
1110	NO			D	98			00	0120		50					0		1330		^	ROAD	n/a	
1112	NN			D	98				0		25		1	625		0	0	0			ROAD	n/a	MARGIONAL FOR INVENTORY
1113	NR			D	98				0		80		4			0					ROAD	n/a	FILL SLOPE
1116	NO			D	98				0		15		5			75				X	ROAD	n/a	25% DEPOSITION
1117 1118	NO NN			D	98 98				0		15 36	3975 1080	5			100				х	ROAD ROAD	n/a n/a	
1110	NO			D	98				0		270		2			80					ROAD	n/a	COMPOUND SLUMP SCARPS
1120	NC			D	98				0		30		1			100					ROAD	n/a	
1121	NH			D	98				0		30		1	9000		81				Х		n/a	COBBLES FLOWING DOWNSLOPE
1122	NH			D	98				0		23		1	920		81				Х		n/a	BOTH SHALSTAB RED (1121,1122)
1123 1124	NN NN			D	98 98				0	210	50 98		6			100				X X	ROAD ROAD	n/a n/a	OVER ROAD OVER ROAD
1124	NH			D	98	65			0		55		5			100		825		x	ROAD	n/a	CULVERT FAILED
1125a	NH	-	- ·							350	5		5			100			1	X			RUNNOUT FROM 1125
1126	NH			D	98				0		50		5			0						n/a	REVEGETADTED >10 YRS OLD
1127	NH			D	98				0	10	50		1	2250		50					ROAD	n/a	50% ONTO ROAD
1128 1129	NH			D	98 98				0	44	30 54		3	0000		100					ROAD	n/a n/a	TRACTOR TRAIL FILL SLOPE
1129	NH	3		D	98	85			0		65	2600	2			0	0				ROAD	n/a	OVER ROAD
1131	NH			D	98	89			0		110		4			0	0	0			ROAD	n/a	
1132	NÖ			D	98				0		100		3			20				Х	ROAD	n/a	FURURE FAILURE LIKELY
1133	NO			D	98				0		120		4			0				V.	ROAD	n/a	
1134 1143	NO NM			D	98 98				0		90 36		6	27000 4320		20 100				х	ROAD	n/a n/a	CONCAVE TOPOGRAPHY
1143	NM			D	98				0		60		2	4320		50					ROAD	n/a	T, 50% DEPOSITION ON ROAD
1145	NM			D	98				0		30		3			100					ROAD	n/a	
1146	NN	3	DS	D	98	69			0	38	42	1596	3	4788	N	0	0	0	1		ROAD	n/a	
1147	NN		50	D	98				0		50		4			50				х	1	n/a	SHALSTAB (RED?), 50% DEPO
1148	NM			D	98					36	50		2			100				x	+	n/a	
1149 1150	NM NM			D	98 98					30 40	50 36		2	3000 4320		100				^	ROAD	n/a n/a	INNER GORGE BANK EROSION INNER GORGE BANK EROSION
1150	NM			D	98				0	40	20		3			0					NORD	n/a	
1152	NM	3	DS	D	98	72			0	40	30	1200	3	3600	N	0						n/a	RECENT SSL IN MIDDLE OF 759
10268	NR	3	DS	Р	96				0		33	561	3.5	1963.5	Y	100				х		-3.307	
10809	NH	3	DS	D	96				0	160	16	2560	3	7680	Y	100	284	384	-	Х	1	n/a	