Section A MASS WASTING

INTRODUCTION

This module summarizes the methods and results of a mass wasting assessment conducted on the Mendocino Redwood Company, LLC (MRC) ownership in the Mallo Pass Creek, Alder Creek, Brush Creek, and Schooner Gulch, the Southcoast Streams Watershed Analysis Unit (Southcoast Streams WAU). California Planning Watersheds included in the Southcoast Streams WAU include portions of Mallo Pass Creek, Lower Alder Creek, North Fork Alder Creek, Lower Brush Creek, Upper Brush Creek, and Point Arena Creeks Planning Watersheds. This assessment was completed by Elias J. Steinbuck, PG 7538, and is part of a watershed analysis initiated by MRC that utilizes modified methodology adapted from procedures outlined in the Standard Methodology for Conducting Watershed Analysis (Version 4.0, Washington Forest Practices Board).

The principle objectives of this assessment are to:

- 1) Identify the types of mass wasting processes active in the basin.
- 2) Identify the link between mass wasting and forest management related activities.
- 3) Identify where the mass wasting processes are concentrated.
- 4) Partition the ownership into zones of relative mass wasting potential based on the likelihood of future mass wasting and sediment delivery to stream channels.

Additionally, the role of mass wasting sediment input to watercourses is examined. This information combined with the results of the Surface and Point Source Erosion module is used to construct a sediment input summary for the Southcoast Streams WAU, contained in the Sediment Input Summary section of this watershed analysis.

The products of this report are: a landslide inventory map (Map A-1), a Terrain Stability Unit (TSU) map (Map A-2), and a mass wasting inventory database (Appendix A). The assembled information will enable forestland managers to make better forest management decisions to reduce management-induced risk of mass wasting. The mass wasting inventory will provide the information necessary to understand the spatial distribution, causal mechanisms, relative size, and timing of mass wasting processes active in the basin with reasonable confidence.

The Role of Mass Wasting in Watershed Dynamics

Mass wasting is a naturally occurring process, but can be accelerated by anthropogenic disturbances. Forest management practices can alter the natural frequency and magnitude of mass wasting events by changing the relative resisting and driving forces acting on a hillslope, altering soil and bedrock pore water pressures, and/or altering the effective cohesion of soil and bedrock (Sidle et.al., 1985). Increases in sediment yield due to mass wasting can disrupt the dynamic equilibrium of stream channels, resulting in a decline in the quality and quantity of amphibian and anadromous fish habitat, water quality, or stream ecology (Reeves et.al., 1995).

Mass wasting events are able to alter stream environments by increasing bed and suspended sediment loads, modifying the grain-size distribution of channel sediment, introducing woody debris, altering channel morphology by aggradation, damming and obstructing the channel, and in extreme cases scouring the channel to bedrock. Stream systems ultimately adjust to major alterations downstream, as well as upstream of individual mass wasting events, however, the consequences may last for a long while. In the Pacific Northwest where anadromous fish are present, mass wasting can have both beneficial and adverse effects on salmonid habitat. Beneficial effects include formation of new spawning, rearing, and over-wintering habitat due to addition of coarse gravels to the channel. The introduction of woody debris and boulders from landslides can increase cover and improve pool to riffle ratios. Adverse effects include filling of pools and scouring of riffles, blockage of fish access, disturbing side-channel rearing areas, and siltation of spawning gravels (Reeves et.al., 1995). The magnitude of these effects are dependent on the frequency, location, and intensity of mass wasting events, as well as the sediment transporting capabilities of a particular stream. Beneficial and adverse effects typically occur simultaneously, and the relative relationship between the two will vary, even for individual events. Because of their greater stream powers, larger streams and rivers adjust to mass wasting perturbations faster than smaller streams.

BEDROCK STRUCTURE AND LITHOLOGY IN THE SOUTHCOAST STREAMS WAU

The geomorphology and geologic structure of the THP area is dominated by the northwest-southeast trending right-lateral San Andreas Fault Zone that lies approximately ¼ mile east of the Schooner Gulch assessment area and ½ mile west of the Mallo Pass and Alder Creek assessment areas. The San Andreas Fault juxtaposes Tertiary-Cretaceous Coastal Belt Franciscan sedimentary rocks to the east against German Rancho Formation, Gualala Formation, and Galloway-Schooner Gulch Formation sedimentary rocks, collectively referred to as the Gualala Block, to the west (Davenport, 1984a; --, 1984b.; --, 1984c.; Manson, 1984a., --, 1984b.).

The Coastal Belt Franciscan is characterized by predominately interbedded sandstone and shale exhibiting a relatively chaotic structure with shear zones, folds, and faults often juxtaposed with coherent sections of thin to massive sandstone and shale. Consistent with mass-flow type marine trench and trench-slope deposition, sedimentary structures are typically absent.

The sedimentary Gualala Block was formed in a marine environment and has subsequently been transported north along the San Andreas Fault Zone (SAFZ). German Rancho Formation rocks consist of consolidated, hard, coarse-grained sandstone interbedded with minor mudstone and conglomerate. The Anchor Bay Member of the Gualala Formation is characterized by consolidated silicified mudstone interbedded with sandstone. The Galloway-Schooner Gulch Formation is characterized by coarse grained massive sandstone.

All of these units are overlain by undifferentiated marine terrace deposits intermittently within the assessment area. Additionally, local alluvial deposits are present along the higher order channels within the Southcoast Streams WAU. Based on field reconnaissance, available geologic and hydrologic maps, and published literature, no regional indicators of adverse rock type, structure, or groundwater conditions were identified.

LANDSLIDE TYPES AND PROCESSES IN THE SOUTHCOAST STREAMS WAU

Landslide features are widespread over the Southcoast Streams WAU, owing to the relatively rapid down-cutting of the steep gradient creeks in response to global sea level fluctuations and regional uplift. The terminology used to describe landslides in this report closely follows the definitions of Cruden and Varnes (1996). This terminology is based on two nouns, the first describing the material that the landslide is composed of, and the second describing the type of movement. Landslides identified in the Southcoast Streams WAU are discussed in detail below. For the purposes of this report, landslides are categorically separated into rapidly moving shallow-seated landslides and slowly moving deep-seated landslides, an essential distinction for forest management purposes.

Shallow-Seated Landslides

Debris slides, debris flows, and debris torrents are terms used throughout Mendocino Redwood Company's ownership to identify shallow-seated landslide processes. The material composition of debris slides, flows, or torrents is considered to be mainly colluvial soil with a significant proportion of coarse material; 20 to 80 percent of the particles are larger than 2 mm (Cruden and Varnes, 1996). Shallow-seated slides generally move quickly downslope and commonly break apart during failure. Shallow-seated slides commonly occur along steep streamside slopes and in converging topography where colluvial materials accumulate and subsurface drainage concentrates. Susceptibility of a slope to fail by shallow-seated landslides is affected by slope steepness, saturation of soil, soil strength (friction angle and cohesion), and root strength (Selby, 1993). Due to the shallow depth and fact that debris slides, flows, or torrents involve the soil mantle, these are landslide types that can be significantly influenced by forest practices.

Debris slides are the most common landslide type observed in the Southcoast Streams WAU. The landslide mass typically fails along a surface of rupture or along relatively thin zones of intense shear strain located near the base of the soil profile. The landslide deposit commonly slides a distance beyond the toe of the surface of rupture and onto the ground surface below the failure; it generally does not slide more than the distance equal to the length of the failure scar. Landslides with deposits that traveled a longer distance below the failure scar would likely be defined as a debris flow or debris torrent. Debris slides commonly occur on steep planar slopes, convergent slopes, along forest roads and on steep slopes adjacent to watercourses. They usually fail by translational movement along an undulating or planar surface of failure. By definition debris slides do not continue downstream upon reaching a watercourse.

A debris flow is similar to a debris slide with the exception that the landslide mass continues to "flow" down the slope below the failure a considerable distance on top of the ground surface. A debris flow is characterized as a mobile, potentially very rapidly moving, slurry of soil, rock, vegetation, and water. High water content is needed for this process to occur. Debris flows generally occur on both steep, planar hillslopes and confined, convergent hillslopes. Often a failure will initiate as a debris slide, but will transform into a debris flow as its moves downslope.

Debris torrents have the greatest potential to destroy stream habitat and deliver large amounts of sediment. The main characteristic distinguishing a debris torrent is that the mass of failed soil and debris "torrents" downstream in a confined channel and erodes the bed and banks of the channel as it moves. As the debris torrent moves downslope and scours the channel, the liquefied landslide material generally increases in mass. Highly saturated soil or run-off in a channel is required for this process to occur. Debris torrents move rapidly and can potentially run down a channel for great distances. They typically initiate in headwall swales and torrent down intermittent watercourses. Often a failure will initiate as a debris slide, but will develop into a debris torrent upon reaching a channel. While actually a combination of two processes, these features were considered debris torrents.

Deep-Seated Landslides

Rockslides and earthflows are terms used throughout Mendocino Redwood Company's ownership to identify deep-seated landslide processes. The failure dates of the deep-seated landslides could not be estimated with any confidence, they are likely to be of varying age with some potentially being over several thousand years old. Many of the deep-seated landslides are considered "dormant", but the importance of identifying them lies in the fact that if reactivated, they have the potential to deliver large amounts of sediment and impair stream habitat.

Accelerated or episodic movement is likely to have occurred over time in response to seismic shaking or high rainfall events.

Rockslides are deep-seated landslides with movement involving a relatively intact mass of rock and overlying earth materials. The failure plane is below the colluvial layer and involves the underlying bedrock. Mode of rock sliding generally is not strictly rotational or translational, but involves some component of each. Rotational slides typically fail along a concave surface, while translational slides typically fail on a planar or undulating surface of rupture. Rockslides commonly create a flat, or back-tilted, bench below the crown of the scarp. A prominent bench is usually preserved over time and can be indicative of a rockslide. Rockslides fail in response to triggering mechanisms such as seismic shaking, adverse local structural geology, high rainfall, offloading or loading material on the slide, or channel incision (Wieczorek, 1996). The stream itself can be the cause of chronic movement, if it periodically undercuts the toe of a rockslide.

Earth flows are deep-seated landslides composed of fine-grained materials and soils derived from clay-bearing rocks. Earth flow materials typically consist of 80% or more of particles smaller than 2mm (Cruden and Varnes, 1996). Materials in an earth flow also commonly contain boulders, some very large, which move down slope in the clay matrix. Failure in earth flows is characterized by spatially differential rates of movement on discontinuous failure surfaces that are not preserved. The "flow" type of movement creates a landslide that can be very irregularly shaped. Some earth flow surfaces are dominantly grassland, while some are partially or completely forested. The areas of grassy vegetation are likely due to the inability of the unstable, clay-rich soils to support forest vegetation. The surface of an earth flow is characteristically hummocky with locally variable slope forms and relatively abundant gullies. The inherently weak materials within earth flows are not able to support steep slopes, therefore slope gradients are generally low to moderate. The rates of movement vary over time and can be accelerated by persistent high groundwater conditions. Timber harvesting can have the effect of increasing the amount of subsurface water, which can accelerate movement in an earth flow (Swanston et al, 1988).

Use of SHALSTAB by Mendocino Redwood Company for the Southcoast Streams WAU

MRC uses SHALSTAB—a coupled steady state runoff infinite slope stability model—to assist with the mapping of the hazard potential of shallow-seated landslides (Dietrich and Montgomery, 1998). William Dietrich of the University of California (Berkeley) and David Montgomery of the University of Washington (Seattle) have published a validation study of the SHALSTAB model. Generally, they found that the SHALSTAB model correctly distinguishes areas more prone to shallow landslide instability. In mass wasting studies conducted in seven basins in northern California, they concluded that a log (q/T) threshold of less than -2.8 identifies the portion of the basin within which on average 57% of the shallow landslides mapped from aerial photographs are found. However, they also found that the performance of SHALSTAB depends strongly on the quality of the topographic data. The best readily available topographic data (10-m grid data from digitized USGS 7.5' quad maps) do not represent the fine scale topography that dictates the convergence of subsurface flow and the locations where shallow landslides are likely to occur. In our watershed analysis, we assess mass wasting hazards apart from SHALSTAB as well, using aerial photographs and field reconnaissance. However, we still use SHALSTAB output as one tool to assist with the interpretation of the landscape into terrain stability units.

METHODS

Landslide Inventory

The mass wasting assessment relies on an inventory of mass wasting features collected through the use of aerial photographs and field observations. MRC owned photographs from 2004 (color, 1:12,000), 2000 (color, 1:12,000), 1987 (black-and-white, 1:12,000), and 1978 (color, 1:15,840) were analyzed, as were 1963 (black-and-white, 1:20,000), and 1952 (black-and-white, 1:20,000) photos on file at Howard Forest in Willits.

Data was collected regarding characteristics and measurements of the identified landslides. We acknowledge that some landslides may have been missed, particularly small ones that may be obscured by vegetation. A brief description of select parameters inventoried for each landslide observed in the field and during aerial photograph interpretation is presented in Figure A-1. A detailed discussion of these parameters follows.

<u>Figure A-1</u>. Description of Select Parameters used to Describe Mass Wasting in the Mass Wasting Inventory.

• Slide Identification: Each landslide is assigned a unique identification number, a two letter code (see below) that denotes which planning watershed (PWS) the slide is located, and a number which indicates the USGS designated map section number the slide is mapped in.

Planning Watershed Codes:

- CM Mallo Pass Creek
- CA Lower Alder Creek
- CN North Fork Alder Creek
- GW Lower Brush Creek
- GU Upper Brush Creek
- GP Point Arena Creeks (Schooner Gulch, Moat Creek)
- TSU # Terrain Stability Unit in which landslide is located.
- Landslide Type:
 - DS debris slide
 - DF debris flow
 - DT debris torrent
 - RS rockslide
 - EF earthflow
- Certainty: The certainty of identification is recorded.
 - D Definite
 - P Probable
 - Q Questionable
- Physical Characteristics: Includes average length, width, depth, and volume of individual slides. Length of torrent, if present, is recorded as a comment.
- Sediment Routing: Denotes the type of stream the sediment was routed into.
 - P Perennial
 - I Intermittent or Ephemeral
 - N-no sediment delivered
- Sediment Delivery: Quantification of the relative percentage of the landslide that delivered to the stream.
- Slope: Percent slope angle is recorded for all shallow-seated landslides observed in the field.

- Age: Relative age of the observed slide is estimated.
 - N new (<5 years old)
 - R recent (5-10 years old)
 - O old (>10 years old)
- Slope Form: Denotes morphology of the slope where the landslide originated
 - C concave
 - D divergent
 - P planar
- Slide Location: Interpretation of the location where the landslide originated
 - H Headwall Swale
 - S Steep Streamside Slopes
 - I Inner Gorge
 - N Neither
- Road Association: Denotes the association of the landslide to land-use practices.
 - R Road
 - S Skid Trail
 - L Landing
 - N-Neither
 - I Indeterminate
- Contributing Area: Categorical description of the area interpreted to concentrate surface and/or subsurface flow to the point of failure for non-road related slide points.
 - S Small, <0.5 acres
 - M Medium, 0.5 3.0 acres
 - L Large, >3.0 acres
- Aspect: Categorical description of the predominant cardinal direction the hillslope is facing for all slide points.
 - NE Northeast, 0° -89°
 - NW Northwest, 270°-359°
 - NE Southeast aspect, 90° -179°
 - NE Southwest aspect, 180°-269°
- Soil Type: County soil survey is used to attribute a soil type to each slide point. Soil types are grouped into similar grain size distributions based on the Unified Soil Classification System rating provided in the county survey.
 - C Coarse, soils consisting of gravel-sand-silt mixture (GM-GC, USCS Class.)
 - F Fine, soils consisting mainly of silt-clay (CL-ML, USCS Class.)
 - M Mixed, soils with coarse and fine material (GC-CL)
- MRC Structure Class: 24 forest stand classes are used to describe the forest conditions across the MRC timberland. In this assessment this information is used to build a database of forest conditions upslope of recent (2001-2004 time period) non-road related failures. Structure classes are generated by classifying the following stand attributes:
 - Dominant Species
 - Dominant Diameter
 - Canopy Cover (%)
- Deep-seated landslides morphologic descriptions: toe, body, lateral scarps, and main scarp (see section below on Systematic Description of Deep-seated Landslide Features).

Landslides identified in the field and from aerial photograph observations are plotted on a landslide inventory map (Map A-1). All shallow-seated landslides are identified as a point plotted on the map at the interpreted head scarp of the failure. Deep-seated landslides are represented as a polygon representing the interpreted perimeter of the landslide body. Physical

and geomorphic characteristics of all inventoried landslides are categorized in a database in Appendix A. Landslide dimensions and depths can be quite variable, therefore length, width, and depth values that are recorded are considered to be the average dimension of that feature. When converting landslide volumes to mass (tons), we assume a soil bulk density of 1.35 grams/cubic centimeter.

The certainty of landslide identification is assessed for each landslide. Three designations are used: definite, probable, and questionable. Definite means the landslide definitely exists. Probable means the landslide probably is there, but there is some doubt in the analyst's interpretation. Questionable means that the interpretation of the landslide identification may be inaccurate; the analyst has the least amount of confidence in the interpretation. Accuracy in identifying landslides on aerial photographs is dependent on the size of the slide, scale of the photographs, thickness of canopy, and logging history. Landslides mapped in areas recently logged or through a thin canopy are identified with the highest level of confidence. Characteristics of the particular aerial photographs used affects confidence in identifying landslides. For example, sun angle creates shadows which may obscure landslides, the print quality of some photo sets varies, and photographs taken at small scale makes identifying small landslides difficult. The landslide inventory results are considered a minimum estimate of sediment production. This is because landslides that were too small to identify on aerial photographs may have been missed, landslide surfaces could have reactivated in subsequent years and not been quantified, and secondary erosion by rills and gullies on slide surfaces is difficult to assess.

The technique employed to extrapolate a sediment volume delivery percentage to landslides not visited in the field relied on an average of those that were visited in the field. While this averaging technique is an oversimplification of actual on the ground sediment delivery measurements, it provides a means for estimating sediment delivery from the slides not visited in the field.

Landslides were classified based on the likelihood that a road associated land use practice was associated with the landslide. In this analysis, the effects of silvicultural techniques were not observed. The Southcoast Streams WAU has been managed, recently and historically, for timber production. Therefore, it was determined that the effect of silvicultural practices was too difficult to confidently assign to landslides. There have been too many different silvicultural activities over time for reasonable confidence in a landslide evaluation based on silviculture. The land use practices that were assigned to landslides were associations with roads, skid trails, or landings. It was assumed that a landslide adjacent to a road, skid trail, or landing was triggered either directly or indirectly by that land use practice. If a landslide appeared to be influenced by more than one land use practice, the more causative one was noted. If a cutslope failure did not cross the road prism, it was assumed that the failure would remain perched on the road, landing, or skid trail and would not deliver to a watercourse. Some surface erosion could result from a cutslope failure and is assumed to be addressed in the road surface erosion estimates (Surface and Fluvial Erosion Module).

Sediment Input from Shallow-Seated Landslides

The overall time period used for mass wasting interpretation and sediment budget analysis is sixty-seven years. Sediment input to stream channels by mass wasting is quantified for seven time periods (1942-1952, 1953-1963, 1964-1978, 1979-1987, 1988-2000, 2001-2004). The evaluation assumes that approximately the last 10 years of mass wasting can be observed in the aerial photograph. This is due to landslide surfaces revegetating quickly, making small mass wasting features older than about 10 years difficult to see. We acknowledge that we have likely missed an unknown quantity of small mass wasting events during the aerial photograph interpretation. However, we assume we have captured the majority of the larger mass wasting events in this analysis.

Sediment delivery estimates from mapped shallow-seated landslides were used to produce the total mass wasting sediment input. In order to extrapolate depth to the shallowseated landslides not visited in the field, an average was taken from the measured depths of landslides visited in the field. Field measurements revealed a similar distribution of depths for management associated (which includes roads, skid trails, and landings), and non-management associated shallow-seated landslides. Therefore, the shallow-seated landslides not verified in the field were assigned the average depth from field verified landslides. In order to extrapolate sediment delivery percentage to landslides not verified in the field, an average was taken from the estimated delivery percentage of field verified landslides.

Delivery statistics were not calculated for deep-seated landslides, however, some of the sediment delivery from shallow-seated landslides is the result of conditions created by deep-seated landslides. For example, a deep-seated failure could result in a debris slide or torrent, which could deliver sediment. Furthermore, over-steepened scarps or toes of deep-seated landslides may have shallow failures associated with them. These types of sediment delivery from shallow-seated landslides associated with deep-seated landslides are accounted for in the delivery estimates.

Sediment Input from Deep-Seated Landslides

Large, active, deep-seated landslides can potentially deliver large volumes of sediment. Delivery generally occurs over long time periods compared to shallow-seated landslides, with movement delivering earth materials into the channel, resulting in an increased sediment load downstream of the failure. Actual delivery can occur by over-steepening of the toe of the slide and subsequent failure into the creek, or by the slide pushing out into the creek. It is very important not to confuse normal stream bank erosion at the toe of a slide as an indicator of movement of that slide. Before making such a connection, the slide surface should be carefully explored for evidence of significant movement, such as wide ground cracks. Sediment delivery could also occur in a catastrophic manner. In such a situation, large portions of the landslide essentially fail and move into the watercourse "instantaneously". These types of deep-seated failures are relatively rare on MRC property and usually occur in response to unusual storm events or seismic ground shaking.

Movement of deep-seated landslides has definitely resulted in some sediment delivery in the Southcoast Streams WAU. Quantification of the sediment delivery from deep-seated landslides was not determined in this watershed analysis. Factors such as rate of movement, or depth to the slide plane, are difficult to determine without subsurface geotechnical investigations that were not conducted in this analysis. Sediment delivery to watercourses from deep-seated landslides (landslides typically ≥ 10 feet thick) can occur by several processes. Such processes can include surface erosion and shallow-or deep-seated movement of a portion or all of the deep-seated landslide deposit.

The ground surface of a deep-seated landslide, like any other hillside surface, is subject to surface erosion processes such as rain drop impact, sheet wash (overland flow), and gully/rill erosion. Under these conditions the sediment delivery from surficial processes is assumed the same as adjacent hillside slopes not underlain by landslide deposits. The materials within the landslide are disturbed and can be arguably somewhat weaker. However, once a soil has developed, the fact that the slope is underlain by a deep-seated landslide should make little difference regarding sediment delivery generated by erosional processes that act at the ground surface. Although fresh, unprotected surfaces that develop in response to recent or active movement could become a source of sediment until the bare surface becomes covered with leaf litter, re-vegetated, or soils developed.

Clearly, movement of a portion or all of a deep-seated landslide can result in delivery of sediment to a watercourse. This determination is made by exploring for any evidence of movement. However, movement would need to be on slopes immediately adjacent to or in close proximity to a watercourse and of sufficient magnitude to push the toe of the slide into the watercourse. A deep-seated slide that toes out on a slope far from a creek or moves only a short distance downslope will generally deliver little to a watercourse. It is also important to realize that often only a portion of a deep-seated slide may become active, though the portion could be quite variable in size. Ground cracking at the head of a large, deep-seated landslide does not necessarily equate to immediate sediment delivery at the toe of the landslide. Movement of large deep-seated landslides can create void spaces within the slide mass. Though movement can be clearly indicated by the ground cracks, many times the toe may not respond or show indications of movement until some of the void space is "closed up". This would be particularly true in the case of very large deep-seated landslides that exhibit ground cracks that are only a few inches to a couple of feet wide. Compared to the entire length of the slide, the amount of movement implied by the ground crack could be very small. This combined with the closing up or "bulking up" of the slide, would not generate much movement, if any, at the toe of the slide. Significant movement, represented by large wide ground cracks, would need to occur to result in significant movement and sediment delivery at the toe of the slide.

Systematic Description of Deep-seated Landslide Features

The characteristics of deep-seated landslides received less attention in the landslide inventory than shallow-seated landslides mainly due to the fact that subsurface analyses would have to be conducted to estimate attributes such as depth, volume, failure date, current activity, and sediment delivery. Subsurface investigation was beyond the scope of this report. Few of the mapped deep-seated landslides were observed to have recent movement associated with them, mainly due to oversteepening of the slope at the toe or scarp. Further assessment of deep-seated landslides will occur on a site-by-site basis in the Southcoast Streams WAU, likely during timber harvest plan preparation and review.

Deep-seated landslides were mainly interpreted by reconnaissance techniques (aerial photograph interpretation complemented by limited field observations). Reconnaissance mapping criteria consist of observations of four morphologic features of deep seated landslides – toe, internal morphology, lateral flanks, main scarp, and vegetation (after McCalpin 1984 as presented by Keaton and DeGraff, 1996, p. 186, Table 9-1). The mapping and classification criteria for each feature are presented in detail below.

Aerial photo interpretation of deep seated landslide features in the Southcoast Streams WAU suggests that the first three morphologic features above are the most useful for inferring the presence of deep-seated landslides. The presence of tension cracks and/or sharply defined and topographically offset scarps are probably a more accurate indicator of recent or active landslide movement. These features, however, are rarely visible on aerial photos.

Sets of five descriptions have been developed to classify each deep-seated landslide morphologic feature or vegetation influence. The five descriptions are ranked in descending order from characteristics more typical of active landslides to dormant to relict landslides. One description should characterize the feature most accurately. Nevertheless, some overlap between classifications is neither unusual nor unexpected. We recognize that some deep-seated landslides may lack evidence with respect to one or more of the observable features, but show strong evidence of another feature. If there is no expression of a particular geomorphic feature (e.g. lateral flanks), the classification of that feature is considered "undetermined". If a deep-seated landslide is associated with other deep-seated landslides, it may also be classified as a landslide complex. In addition to the classification criteria specific to the deep-seated landslide features, more general classification of the strength of the interpretation of the deep-seated landslide is conducted. Some landslides are obscured by vegetation to varying degrees, with areas that are clearly visible and areas that are poorly visible. In addition, weathering and erosion processes may also obscure geomorphic features over time. The quality of different aerial photograph sets varies and can sometimes make interpretations difficult. Owing to these circumstances, each inferred deep-seated landslide feature is classified according to the strength of the evidence as definite, probable or questionable as defined with respect to interpretation of shallow landslides.

At the project scale (THP development and planning), field observations of deep-seated landslide morphology and other indicators by qualified professionals are expected to be used to reduce uncertainty of interpretation inherent in reconnaissance mapping. Field criteria for mapping deep-seated landslides and assessment of activity are presented elsewhere.

Deep Seated Landslide Morphologic Classification Criteria:

- I. Toe Activity
 - 1. Steep streamside slopes with extensive unvegetated to sparsely vegetated debris slide scars. Debris slides occur on both sides of stream channel, but more prominently on side containing the deep-seated landslide. Stream channel in toe region may contain coarser sediment than adjacent channel. Stream channel may be pushed out by toe. Toe may be eroding, sharp topography/geomorphology.
 - 2. Steep streamside slopes with few unvegetated to sparsely vegetated debris slide scars. Debris slides generally are distinguishable only on streamside slope containing the deepseated landslide. Stream channel may be pushed out by toe. Sharp edges becoming subdued.
 - 3. Steep streamside slopes that are predominantly vegetated with little to no debris slide activity. Topography/geomorphology subdued.
 - 4. Gently sloping stream banks that are vegetated and lack debris slide activity. Topography/geomorphology very subdued.
 - 5. Undetermined
- II. Internal Morphology
 - 1. Multiple, well defined scarps and associated angular benches. Some benches may be rotated against scarps so that their surfaces slope back into the hill causing ponded water, which can be identified by different vegetation than adjacent areas. Hummocky topography with ground cracks. Jack-strawed trees may be present. No drainage to chaotic drainage/disrupted drainage.
 - 2. Hummocky topography with identifiable scarps and benches, but those features have been smoothed. Undrained to drained but somewhat subdued depressions may exist. Poorly established drainage.
 - 3. Slight benches can be identified, but are subtle and not prominent. Undrained depressions have since been drained. Moderately developed drainage to established drainage but not strongly incised. Subdued depressions but are being filled.
 - 4. Smooth topography. Body of slide typically appears to have failed as one large coherent mass, rather than broken and fragmented. Developed drainage well established, incised. Essentially only large undrained depressions preserved and would be very subdued. Could have standing water. May appear as amphitheater slope where slide deposit is mostly or all removed.
 - 5. Undetermined

III. Lateral Flanks

- 1. Sharp, well defined. Debris slides on lateral scarps fail onto body of slide. Gullies/drainage may begin to form at boundary between lateral scarps and sides of slide deposit. Bare spots are common or partially unvegetated.
- 2. Sharp to somewhat subdued, rounded, essentially continuous, might have small breaks; gullies/drainage may be developing down lateral edges of slide body. May have debris slide activity, but less prominent. Few bare spots.
- 3. Smooth, subdued, but can be discontinuous and vegetated. Drainage may begin to develop along boundary between lateral scarp and slide body. Tributaries to drainage extend onto body of slide.
- 4. Subtle, well subdued to indistinguishable, discontinuous. Vegetation is identical to adjacent areas. Watercourses could be well incised, may have developed along boundary between lateral scarp and slide body. Tributaries to drainage developed on slide body.
- 5. Undetermined

IV. Main Scarp

- 1. Sharp, continuous geomorphic expression, usually arcuate break in slope with bare spots to unvegetated; often has debris slide activity.
- 2. Distinct, essentially continuous break in slope that may be smooth to slightly subdued in parts and sharp in others, apparent lack of debris slide activity. Bare spots may exist, but are few.
- 3. Smooth, subdued, less distinct break in slope with generally similar vegetation relative to adjacent areas. Bare spots are essentially non-existent.
- 4. Very subtle to subdued, well vegetated, can be discontinuous and deeply incised, dissected; feature may be indistinct.
- 5. Undetermined

V. Vegetation

- 1. Less dense vegetation than adjacent areas. Recent slide scarps and deposits leave many bare areas. Bare areas also due to lack of vegetative ability to root in unstable soils. Open canopy, may have jack-strawed trees; can have large openings.
- 2. Bare areas exist with some regrowth. Regrowth or successional patterns related to scarps and deposits. May have some openings in canopy or young broad-leaf vegetation with similar age.
- 3. Subtle differences from surrounding areas. Slightly less dense and different type vegetation. Essentially closed canopy; may have moderately aged to old trees.
- 4. Same size, type, and density as surrounding areas.
- 5. Undetermined

Terrain Stability Units

Terrain Stability Units (TSUs) are delineated by partitioning the landscape into zones characterized by similar geomorphic attributes, shallow-seated landslide potential, and sediment delivery to stream channels. A combination of aerial photograph interpretation, field investigation, and SHALSTAB output were utilized to delineate TSUs. The TSU designations for the Southcoast Streams WAU are only meant to be general characterizations of similar geomorphic and terrain characteristics related to shallow seated landslides. Deep-seated landslides are also shown on the TSU map (Map A-2). The deep-seated landslides have been included to provide land managers with supplemental information to guide evaluation of harvest planning and subsequent needs for geologic review. The landscape and geomorphic setting in the Southcoast Streams WAU is certainly more complex than generalized TSUs delineated for this evaluation. The TSUs are only meant to be a starting point for gauging the need for site-specific field assessments.

The delineation of each TSU described is based on landforms present, the mass wasting processes, sensitivity to forest practices, mass wasting hazard, delivery potential, and forest management related trigger mechanisms for shallow seated landslides. The landform section of the TSU description defines the terrain found within the TSU. The mass wasting process section is a summary of landslide types found in the TSU. Sensitivity to forest practice and mass wasting hazard is, in part, a subjective call by the analyst based on the relative landslide hazard and influence of forest practices. Delivery potential is based on proximity of TSU to watercourses and the likelihood of mass wasting in the unit to reach a watercourse. The hazard potential is based on a combination of the mass wasting hazard and delivery potential (Table A-1). The trigger mechanisms are a list of forest management practices that may have the potential to create mass wasting in the TSU.

<u>Table A-1</u>. Ratings for Potential Hazard of Delivery of Debris and Sediment to Streams by Mass Wasting (L= low hazard, M= moderate hazard, H = high hazard)(from Version 4.0, Washington Forest Practices Board, 1995).

		Low	Moderate	High		
Delivery	Low	L	L	Μ		
Potential	Moderate	L	Μ	Н		
	High	L	Μ	Н		

Mass Wasting Potential

RESULTS

Mass Wasting Inventory

A Landslide Inventory Data Sheet (Appendix A) was used to record attributes associated with each landslide. The spatial distribution and location of landslides is shown on Map A-1.

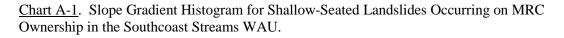
A total of 423 shallow-seated landslides (debris slides, torrents, or flows) were identified and characterized in the Southcoast Streams WAU. A total of 40 deep-seated landslides (rockslides and earthflows) were mapped in the Southcoast Streams WAU. A considerable effort was made to field verify as many landslides as possible to insure greater confidence in the results. Approximately 20% (82/423) of the identified shallow-seated landslides were field verified. From this level of field observations, extrapolation of landslide depth and sediment delivery is assumed to be performed with a reasonable level of confidence.

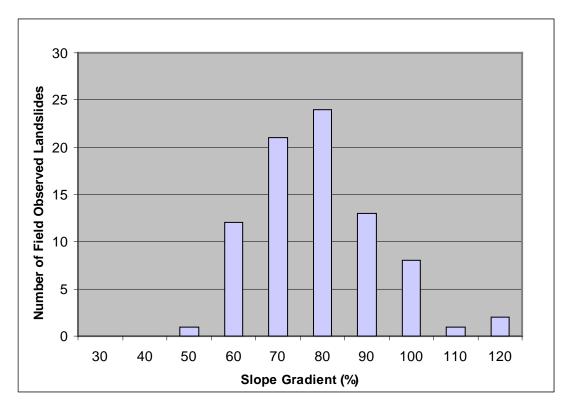
The temporal distribution of the 423 shallow-seated landslides observed in the Southcoast Streams WAU is listed in Table A-2. The distribution by landslide type is shown in Table A-3.

Planning	1943 -	1953 -	1964 -	1979 -	1988 -	2001 -	1943 -
Watershed	1952	1963	1978	1987	2000	2004	2004
Mallo Pass	19	35	40	31	7	1	133
Lower Alder	32	39	39	40	20	8	178
North Fork Alder	10	24	18	1	2	0	55
Lower Brush	1	4	0	0	1	0	6
Upper Brush	0	0	0	2	0	0	2
PA Creeks	7	9	13	10	6	4	49
Southcoast Streams WAU	69	111	110	84	36	13	423

Table A-2. Shallow-Seated Landslide Summary for Southcoast Streams WAU by Time Periods.

Table A-3. Landslide Summary by Type and Planning Watershed for Southcoast Streams WAU.

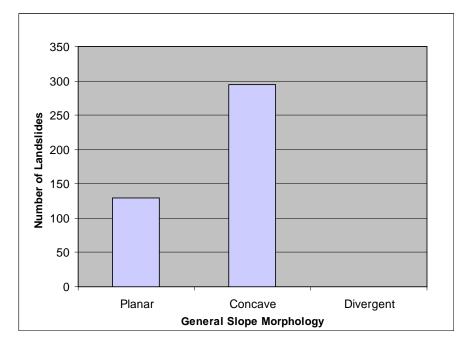

	Debris	Debris	Debris	Rock-	Earth-		Road ^a
Planning Watershed	Slides	Flows	Torrents	slides	flows	Total	Assoc.
Mallo Pass	119	12	2	8	0	141	113
Lower Alder	161	13	4	22	0	200	115
North Fork Alder	54	1	0	6	0	61	40
Lower Brush	5	1	0	0	0	6	6
Upper Brush	2	0	0	0	0	2	2
PA Creeks	43	4	2	3	1	53	34
Southcoast Streams							
WAU	384	31	8	39	1	463	310

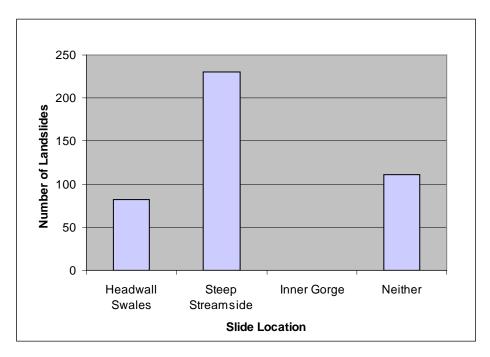

a – Includes roads, skid trails, and landings

The majority of the landslides observed in the Southcoast Streams WAU are debris slides. Of the 423 shallow-seated landslides in the Southcoast Streams WAU, 310 are determined to be road associated (includes roads, skid trails, or landings). This is approximately 73% of the total number of shallow-seated landslides. There were 39 debris torrents and flows observed in

the Southcoast Streams WAU. This is approximately 9% of the total shallow-seated landslides observed in the Southcoast Streams WAU.

Of the 82 field observed shallow-seated landslides across the Southcoast Streams WAU, 84% (69/82) were initiated on slopes of 70% gradient or higher (Chart A-1).




A majority of inventoried landslides originated in convergent topography (294/423, or 70%) where subsurface water tends to concentrate, or on steep, planar topography (129/423, or 30%), where sub-surface water can be concentrated at the base of slopes, in localized topographic depressions, or by local geologic structure. No landslides originated in divergent topography where subsurface water is typically routed to the sides of ridges (Chart A-2).

A majority of the inventoried landslides were discovered along steep streamside slopes (230/423, or 54%), with fewer found in headwall swales (82/423, or 19%), and no inner gorge slopes observed. A significant portion (111/423, or 26%) of the inventoried landslides were observed on open slopes away from any steep streamside slopes, or headwall swales, however, a majority of these slides originated in fill material along the outside edge of roads and skid trails (Chart A-3). Such observations were, in part, the basis for the delineation of the WAU into Terrain Stability Units.

<u>Chart A-2</u>. Slope Morphology Summary for Shallow-Seated Landslides Occurring on MRC Ownership in the Southcoast Streams WAU.

<u>Chart A-3</u>. Slide Location Summary for Shallow-Seated Landslides Occurring on MRC Ownership in the Southcoast Streams WAU.

Terrain Stability Units

The landscape was partitioned into seven Terrain Stability Units representing general areas of similar geomorphology, landslide processes, and sediment delivery potential for shallow-seated landslides (Map A-2). The units are to be used by forest managers to assist in making decisions that will minimize future mass wasting sediment input to watercourses. The delineation for the TSUs was based on qualitative observations and interpretations from aerial photographs, field evaluation, and SHALSTAB output. Deep-seated landslides are also shown on the TSU map (Map A-2). The deep-seated landslides have been included to provide land managers with supplemental information to guide evaluation of harvest planning and subsequent needs for geologic review.

Shallow-seated landslide characteristics considered in determination of map units are size, frequency, delivery to watercourses, and spatial distribution. Hillslope characteristics considered are slope form (convergence, divergence, planar), slope gradient, relative magnitude of stream incision, and overall geomorphology. The range of slope gradients was determined from USGS 1:24,000 topographic maps and field observations. Hillslope and landslide morphology vary within each individual TSU and the boundaries are not exact. This evaluation is not intended to be a substitute for site-specific field assessments. Site-specific field assessments will still be required in TSUs and at deep-seated landslides or specific areas of some TSUs to assess the risk and likelihood of mass wasting impacts from a proposed management action. The TSUs are compiled on the entitled Terrain Stability Unit Map (Map A-2).

TSU Number:	1
Description:	Inner Gorge or Steep Streamside Slopes adjacent to Low Gradient Watercourses
Materials:	Shallow soils formed on weathered marine sedimentary rocks. Maybe composed of toe sediment of deep-seated landslide deposit.
Landform:	Characterized by steep streamside slopes or inner gorge topography along low gradient watercourses (typically less than 6-7%). An inner gorge is a geomorphic feature created from down cutting of the stream, generally in response to tectonic uplift. Inner gorge slopes extend from either one or both sides of the stream channel to the first break in slope. Inner gorge slope gradients typically exceed 70%, although slopes with lower inclination are locally present. Inner gorge slopes commonly contain areas of multiple, coalescing shallow seated landslide scars of varying age. Steep streamside slopes are characterized by their lack of a prominent break in slope. Slopes are generally planar in form with slope gradients typically exceeding 70%. The upper extent of TSU 1 is variable. Where there is not a break in slope, the unit may extend 300 feet upslope (based on the range of lengths of landslides observed, 20- 300 feet). Landslides in this unit generally deposit sediment directly into Class I and II streams. Small areas of incised terraces may be locally present.
Slope:	Typically >70 %, (mean slope of observed mass wasting events is 85%, range is 65%-120%)
Total Area:	592 acres; 4% of the total WAU area.
MW Processes:	 76 road-associated landslides 70 Debris slides 6 Debris flows 0 Debris torrents
	26 non-road associated landslides26 Debris slides
	0 Debris flows0 Debris torrents
Non Road-related Landslide Density:	0.04 landslides per acre for the past 62 years.
Forest Practices Sensitivity:	High sensitivity to road construction due to proximity to watercourses, high sensitivity to harvesting and forest management practices due to steep slopes with localized colluvial or alluvial soil deposits adjacent to watercourses.
Mass Wasting Potential:	High localized potential for landslides in both unmanaged and managed conditions.

Delivery Potential:	High
Delivery Criteria Used: Hazard-Potential Rating:	Steep slopes adjacent to stream channels, a majority of the observed landslides delivered sediment into streams. High
Forest Management Related Trigger Mechanisms:	 Sidecast fill material placed on steep slopes can initiate debris slides or flows in this unit. Concentrated drainage from roads onto unstable areas can initiate debris slides or flows in this unit. Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit. Cut-slope of roads can expose potential failure planes creating debris slides, torrents or flows in this unit. Cut-slope of roads can remove support of the toe or expose potential failure planes of rockslides or earth flows. Sidecast fill material created from skid trail construction placed on steep slopes can initiate debris slides or flows in this unit. Concentrated drainage from skid trails onto unstable areas can initiate debris slides or flows in this unit. Cut-slope of skid trails can remove support of slope creating debris slides, torrents or flows in this unit. Cut-slope of skid trails can remove support of the toe or expose potential failure planes of rockslides or earth flows. Cut-slope of skid trails can remove support of slope creating debris slides, torrents or flows in this unit. Cut-slope of skid trails can remove support of the toe or expose potential failure planes of rockslides or earth flows. Cut-slope of skid trails can remove support of the toe or expose potential failure planes of rockslides or earth flows. Concentrated drainage from roads can increase groundwater, accelerating movement of rockslides or earth flows and oversteepning TSU 1 slopes. Removal of vegetation from these slopes can result in loss of evapotranspiration and thus increase pore water pressures that could initiate slope failure in this unit. Post timber harvest root decay of hardwood or non-redwood conifer species can be a contributing factor in the initiation of debris slides, torrents or flows in this unit.
Confidence:	High confidence for susceptibility of landslides and sediment delivery in this unit. Moderate confidence in placement of the unit boundary. This unit is locally variable and exact boundaries are best determined during field observations. Within this unit there are likely areas of low gradient slopes that are less susceptible to mass wasting.

TSU Number:	2
Description:	Inner gorge or Steep Streamside Slopes adjacent to high gradient intermittent or ephemeral watercourses.
Materials:	Shallow soils formed from weathered marine sedimentary rocks with localized areas of thin to thick colluvial deposits.
Landforms:	Characterized by steep streamside slopes or inner gorge topography along low gradient watercourses (typically greater than 6-7%). An inner gorge is a geomorphic feature created from down cutting of the stream, generally in response to tectonic uplift. Inner gorge slopes extend from either one or both sides of the stream channel to the first break in slope. Inner gorge slope gradients typically exceed 70%, although slopes with lower inclination are locally present. Inner gorge slopes commonly contain areas of multiple, coalescing shallow seated landslide scars of varying age. Steep streamside slopes are characterized by their lack of a prominent break in slope. Slopes are generally planar in form with slope gradients typically exceeding 70%. The upper extent of TSU 2 is variable. Where there is not a break in slope, the unit may extend 300 feet upslope (based on the range of lengths of landslides observed, 25- 300 feet). Landslides in this unit generally deposit sediment directly into Class I and II streams.
Slope:	Typically >70% (mean slope of observed mass wasting events is 68%, range is 60%-85%).
Total Area:	1,315 acres; 10% of total WAU area
MW Processes:	 91 road-associated landslides 85 Debris slides 4 Debris flows 2 Debris torrents
	 32 non-road associated landslides 25 Debris slides 4 Debris flows 3 Debris torrent
Non Road-related Landslide Density:	0.02 landslides per acre for the past 62 years.
Forest Practices Sensitivity:	High sensitivity to roads due to steep slopes adjacent to watercourses, high to moderate sensitivity to harvesting and forest management due to steep slopes next to watercourses. Localized areas of steeper and/or convergent slopes may have an even higher sensitivity to forest practices.

Mass Wasting Potential:	High in both unmanaged and managed conditions due to the steep morphology of the slope.
Delivery Potential:	High
Delivery Criteria Used:	Steep slopes adjacent to stream channels, a majority of the observed landslides delivered sediment into streams.
Hazard-Potential Rating:	High
Forest Management Related Trigger Mechanisms:	 Sidecast fill material placed on steep slopes can initiate debris slides, torrents or flows in this unit. Concentrated drainage from roads onto unstable areas can initiate debris slides, torrents or flows in this unit. Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit. Cut-slope of roads can expose potential failure planes creating debris slides, torrents or flows in this unit. Cut-slope of roads can remove support of the toe or expose potential failure planes of rockslides or earth flows. Sidecast fill material created from skid trail construction placed on steep slopes can initiate debris slides, torrents or flows. Concentrated drainage from skid trails onto unstable areas can initiate debris slides, torrents or flows. Cut-slope of skid trails can expose potential failure planes creating debris slides, torrents or flows. Cut-slope of skid trails can expose potential failure planes creating debris slides, torrents or flows. Post effective slides, torrents or flows in this unit. Post timber harvest root decay of hardwood or non-redwood conifer species can be a contributing factor in the initiation of debris slides, torrents or flows in this unit.
Confidence:	High confidence for susceptibility of unit to landslides and sediment delivery. Moderate confidence in the placement of this unit. This unit is highly localized and exact boundaries are better determined from field observations. Within this unit there are likely areas of low gradient slopes that are less susceptible to mass wasting.

TSU Number:	3
Description:	Dissected and convergent topography
Materials:	Shallow soils formed from weathered marine sedimentary rocks with localized thin to thick colluvial deposits.
Landforms:	These areas have steep slopes (typically greater than 65%) that have been sculpted over geologic time by repeated debris slide events. The area is characterized primarily by 1) steep convergent and dissected topography located within steep gradient collivial hollows or headwall swales and small high gradient watercourses, and 2) locally steep planar slopes where there is strong evidence of past landsliding. MRC intends this unit to represent areas with a high hazard potential for shallow landsliding, while not constituting a continuous streamside unit (otherwise it would classify as TSU 1 or 2). The mapped unit may represent isolated individual "high hazard" areas or areas where there is a concentration of "high hazard" areas. Boundaries between higher hazard areas and other more stable areas (i.e. divergent and lower gradient slopes) within the unit should be keyed out as necessary based on field observation of landslide features.
Slope:	Typically >70%, (mean slope of observed mass wasting events is 78%, range is 65%-90%)
Total Area:	761 acres, 6% of the total WAU
MW Processes:	 69 road associated landslides 57 Debris slides 9 Debris flows 3 Debris torrents 33 non-road associated landslides 32 Debris slides 1 Debris flows 0 Debris torrents
Non Road-related Landslide Density:	0.04 landslides per acre for the past 62 years.
Forest Practices Sensitivity: Mass Wasting	Moderate to high sensitivity to road building, moderate to high sensitivity to harvesting and forest management practices due to moderate to steep slopes within this unit. Localized areas of steeper and/or convergent slopes have even higher sensitivity to forest practices.
Potential:	High
Delivery Potential:	Moderate

Delivery Criteria Used:	The converging topography directs mass wasting down slopes toward watercourses. Delivery potential may be high based on relatively high number of debris slides. Landslides in headwater swales often torrent or flow down watercourses. Approximately 80% of landslides in this unit delivered sediment.
Hazard-Potential Rating:	High
Forest Management Related Trigger Mechanisms:	 Sidecast fill material placed on steep slopes can initiate debris slides, torrents or flows in this unit. Concentrated drainage from roads onto unstable areas can initiate debris slides, torrents or flows in this unit. Concentrated drainage from roads can increase groundwater, accelerating movement of rockslides or earth flows in this unit. Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit. Cut-slope of roads can expose potential failure planes creating debris slides, torrents or flows in this unit. Cut-slope of roads can remove support of the toe or expose potential failure planes of rockslides or earth flows. Cut-slope of skid trails can expose potential failure planes creating debris slides, torrents or flows. Cut-slope of skid trails can expose potential failure planes creating debris slides, torrents or flows. Cut-slope of skid trails can expose potential failure planes creating debris slides, torrents or flows. Cut-slope of skid trails can expose potential failure planes creating debris slides, torrents or flows. Cut-slope of skid trails can expose potential failure planes creating debris slides, torrents or flows in this unit. Cut-slope of skid trails can expose potential failure planes creating debris slides, torrents or flows in this unit. Sidecast fill material created from skid trail construction placed on steep slopes can initiate debris slides, torrents or flows. Removal of vegetation from these slopes can result in loss of evapotranspiration and thus increase pore water pressures that could initiate slope failure in this unit. Post timber harvest root decay of hardwood or non-redwood conifer species can be a contributing factor in the initiation of debris slides, torrents or flows in this unit.
Confidence:	Moderate confidence in placement of unit. This unit is locally variable and exact boundaries are best determined from field observations. Some areas within this unit could have higher susceptibility to landslides and higher delivery rates due to localized areas of steep slopes, weak earth materials, and/or adverse ground water conditions.

TSU Number:	4
Description:	Non-dissected topography
Materials:	Shallow to moderately deep soils formed from weathered marine sedimentary rocks.
Landforms:	Moderate to moderately steep hillslopes with planar, divergent, or broadly convergent slope forms with isolated areas of steep topography or strongly convergent slope forms. TSU 4 is generally a midslope region of lesser slope gradient and more variable slope form than TSU 3.
Slope:	Typically 40% - 65%, (mean slope of observed mass wasting events is 76%, range is 50% - 110%)
Total Area:	9829 acres, 73% of the total WAU
MW Processes:	 74 road-associated landslides 69 Debris slides 5 Debris flows 0 Debris torrents 21 non-road associated landslides 19 Debris slides 2 Debris flows 0 Debris torrent
Non Road-related Landslide Density:	0.002 landslides per acre for the past 62 years.
Forest Practices Sensitivity:	Moderate sensitivity to road building, moderate to low sensitivity to harvesting and forest management practices due to moderate slope gradients and non-converging topography within this unit. Localized areas of steeper slopes have higher sensitivity to forest practices.
Mass Wasting Potential:	Moderate
Delivery Potential:	High
Delivery Criteria Used:	This unit constitutes a majority of the WAU, which accounts for it having the highest number of landslides. This unit has a low non-road related landslide density, and therefore has a moderate mass wasting hazard. Although landslides in this unit are localized, when landslides occur, the landslide has a high potential to deliver. Approximately 90% of the landslides in this unit delivered sediment. This unit has a moderate sensitivity to road building due to low road landslide density.

Hazard-Potential Rating:	Moderate
Forest Management Related Trigger Mechanisms:	 Sidecast fill material placed on steep slopes can initiate debris slides, torrents or flows in this unit. Concentrated drainage from roads onto unstable areas can initiate debris slides, torrents or flows in this unit. Concentrated drainage from roads can increase groundwater, accelerating movement of rockslides or earth flows in this unit. Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit. Cut-slope of roads can expose potential failure planes creating debris slides, torrents or flows in this unit. Cut-slope of roads can remove support of the toe or expose potential failure planes of rockslides or earth flows. Concentrated drainage from skid trails onto unstable areas can initiate debris slides, torrents or flows. Cut-slope of skid trails can expose potential failure planes creating debris slides, torrents or flows. Cut-slope of skid trails can expose potential failure planes creating debris slides, torrents or flows. Cut-slope of skid trails can expose potential failure planes creating debris slides, torrents or flows in this unit. Cut-slope of skid trails can remove support of the toe or expose potential failure planes of rockslides or earth flows. Cut-slope of skid trails can remove support of the toe or expose potential failure planes of rockslides or earth flows. Sidecast fill material created from skid trail construction placed on steep slopes can initiate debris slides, torrents or flows. Removal of vegetation from these slopes can result in loss of evapotranspiration and thus increase pore water pressures that could initiate slope failure in this unit. Post timber harvest root decay of hardwood or non-redwood conifer species can be a contributing factor in the initiation of debris slides, torrents or flows in this unit.
Confidence:	High confidence in placement of unit, however, this unit is locally variable and exact boundaries are best determined from field observations. Some areas within this unit could have higher susceptibility to landslides and higher delivery rates due to localized areas of steep slopes, weak earth materials, and/or adverse ground water conditions.

TSU Number:	5
Description:	Low relief topography
Material:	Moderately deep to deep soils, derived from weathered marine sedimentary rocks.
Landforms:	Characterized by low gradient slopes generally less than 40%, although in some places slopes may be steeper. This unit occurs on ridge crests, low gradient side slopes, and well-developed terraces. Shallow-seated landslides seldom occur and usually do not deliver sediment to stream channels.
Slope:	Typically <40% (based on field observations)
Total Area:	570 acres, 4% of WAU area
MW Processes:	 0 road-associated landslides 0 Debris slides 0 Debris flows 0 Debris torrents 1 non-road associated landslides 1 Debris slides 0 Debris flows 0 Debris torrent
Non Road-related Landslide Density:	0.001 landslides per acre for the past 62 years.
Forest Practices Sensitivity: Mass Wasting Potential:	Low sensitivity to road building and forest management practices due to low gradient slopes Low
Delivery Potential:	Low
Delivery Criteria Used:	Sediment delivery in this unit is low.
Hazard-Potential Rating:	Low
Forest Management Related Trigger Mechanisms:	•Poorly sized culvert or excessive debris at watercourse crossings can initiate failure of the fill material creating debris slides, torrents or flows in this unit.

•Concentrated drainage from roads and skid trails can initiate or accelerate gully erosion, which can increase the potential for mass wasting processes.

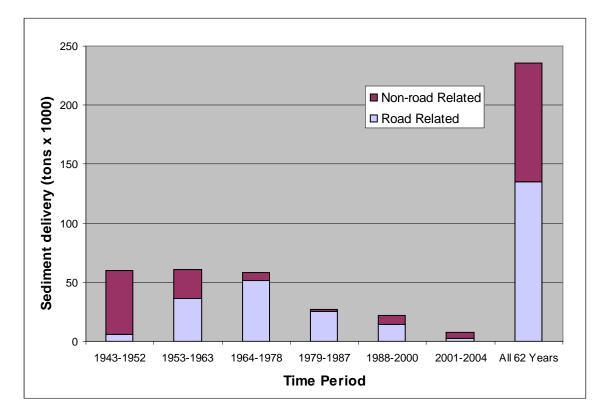
Confidence: High confidence in placement of unit in areas of obviously stable topography. High confidence in mass wasting potential and sediment delivery potential ratings.

TSU Number:	8
Description:	Ohlson Ranch Formation
Materials:	Fine-grained, relatively cohesionless, sandy material.
Landforms:	Boundaries of this unit correspond to the mapped outcrops of the Ohlson Ranch Formation (Manson, 1984). Slopes are characterized by relatively low gradient slopes found along broad wave cut ridge-tops. Ground surfaces in this unit contain areas of vegetation similar to the surrounding forest. Rills and gullies are common in this unit, particularly where roads and skid trails concentrate water for any significant distance.
Slope:	Typically <30%
Total Area:	382 acres; 8% of the total WAU.
MW Processes:	0 landslides
Non Road-related Landslide Density:	0 landslides per acre for past 67 years.
Forest Practices Sensitivity:	High sensitivity to roads and skid trails, low sensitivity to harvesting of trees. However, slopes underlain by this unit are not steep and therefore usually harvested using ground based yarding where skid trails
Mass Wasting Potential:	Low
Delivery Potential:	Moderate
Delivery Criteria Used:	All mapped exposures of the Ohlson Ranch Formation, and overlying residual soils, typically occur on low gradient ridge-tops where run-off is generated through subsurface processes. However, where first order ephemeral watercourses originate in these deposits, and connectivity exists to higher order tributaries, the potential for surface erosion and sediment delivery is relatively high if roads and/or skid trails are not properly constructed and/or drained after operations.
Hazard Potential Rating:	Low
Forest Management Related Trigger Mechanisms:	•Concentrated drainage from roads and skid trails can initiate or accelerate gully erosion, which can increase the potential for sediment delivery.

Confidence: High confidence in placement of unit in areas of obviously erodible cohesionless sandy earth materials. High confidence in mass wasting potential and sediment delivery potential ratings.

Sediment Input from Mass Wasting

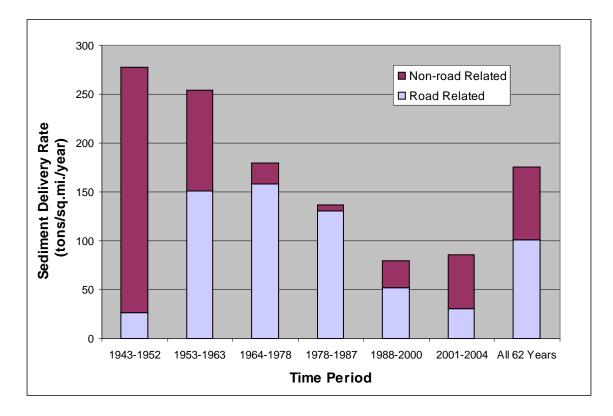
Sediment delivery was estimated for shallow-seated landslides in the Southcoast Streams WAU. Depth values were estimated to facilitate approximation of mass for the landslides not observed in the field. In order to extrapolate depth to the shallow-seated landslides not visited in the field, an average was taken from the measured depths of landslides visited in the field. The mean depth of all shallow-seated landslides interpreted as being unrelated to road systems was 5 feet. The mean depth of all shallow seated landslides interpreted as being associated with road systems was 4 feet. Due to the relative lack of debris flows and torrents, no effort was made to differentiate landslide depths among different shallow landslide types. The mean depths were assigned to all landslides not verified in the field.


The mean sediment delivery percentage assigned to shallow landslides determined to deliver sediment, but not field verified, is 40%. Of the 423 shallow-seated landslides mapped in this watershed analysis, 396 of the landslides delivered some amount of sediment (Table A-4).

Planning Watershed	Total Landslides	Landslides with Sediment Delivery	Landslides with No Sediment Delivery
Mallo Pass Cr.	133	124	9
Lower Alder Cr.	178	165	13
North Fork Alder Cr.	55	54	1
Lower Brush Cr.	6	6	0
Upper Brush Cr.	2	2	0
Point Arena Creeks	49	45	4
Southcoast Streams WAU	423	396	27
Percentage	100%	94%	6%

<u>Table A-4.</u> Total Shallow-Seated Landslides Mapped for each PWS in Southcoast Streams WAU.

Sediment input to stream channels by mass wasting is quantified for six time periods (1943-1952, 1953-1963, 1964-1978, 1979-1987, 1988-2000, 2001-2004). The dates for each of the time periods are based on the date of aerial photographs used to interpret landslides (1952, 1963, 1978, 1987, 2000, and 2004) and field observations (2011). The available aerial photography did not correspond exactly to ten year time periods for mass wasting assessment, however the time periods and the aerial photographs analyzed approximate decadal intervals and bracket major disturbance events (e.g. intensive tractor logging in the 1960's and 1970's). These time periods allow for a general evaluation of the relative magnitude of sediment delivery rate estimates across the Southcoast Streams WAU.


A total of approximately 235,529 tons of mass wasting sediment delivery was estimated for the time period 1943-2004 in the Southcoast Streams WAU. This equates to approximately 176 tons/sq. mi./yr. Of the total estimated amount, 25% delivered from 1943-1952, 25% delivered from 1953-1963, 25% delivered from 1964-1978, 12% delivered from 1979-1987, 10% delivered from 1988-2000, and 3% delivered in the 2001-2004 time period (Chart A-4).

<u>Chart A-4</u>. Sediment Delivery Estimates by Time Period for Shallow-Seated Landslides on MRC Ownership in the Southcoast Streams WAU.

Relatively large amounts of sediment delivered from 1953-1978 is partly the result of intensive road building and ground based yarding on relatively steep slopes. Road and skid trail construction during this era of forest management included the practice of sidecasting excavated fill material, at times onto steep slopes. Additionally, according to local rainfall data, the 1974 storm event produced the wettest days on record at numerous precipitation stations on the northwest coast (Goodridge, 1997). Numerous studies reveal there is a pronounced effect of pore water pressure changes on factor of safety for shallow-seated landslides (Sidle et al., 1985).

The sediment delivery estimates were normalized by time (years) and area (square miles) for the purposes of relative comparison between time intervals and planning watershed. The resulting sediment delivery rates in the Southcoast Streams WAU change dramatically over the time period investigated (Chart A-5).

<u>Chart A-5</u>. Mass Wasting Sediment Delivery Rate (tons/sq.mi./year) from Shallow-Seated Landslides on MRC Ownership in the Southcoast Streams WAU.

Road associated mass wasting (including roads, skid trails, and landings) was found to have contributed 135,370 tons (101 tons/sq. mi./yr) of sediment over the 62 years analyzed in the Southcoast Streams WAU (Table A-5). This represents approximately 57% of the total mass wasting inputs for the Southcoast Streams WAU for 1943-2004. The road related sediment delivery rates vary widely over the time periods analyzed. A review of the aerial photo record reveals a majority of Southcoast Streams WAU had been intensively tractor yarded in the 1960's and 1970's.

<u>Table A-5</u>. Road Associated Sediment Delivery (tons) for Shallow-Seated Landslides in the Southcoast Streams WAU by Planning Watershed.

	Road	Percent of Total	
	Associated	Sediment Delivery	
Planning	Mass Wasting	From Planning	
Watershed	Sediment	Watershed	
	Delivery (tons)		
Mallo Pass Creek	52,363	72%	
Lower Alder Creek	46,459	44%	
North Fork Alder Creek	18,560	62%	
Lower Brush Creek	1,836	100%	

Upper Brush Creek	500	100%
Point Arena Creeks	15,652	59%
Southcoast Streams WAU	135,370	57%

A categorical description of the land area interpreted to concentrate surface and/or subsurface flow to the point of failure for non-road related shallow-seated failures was conducted. Road related failures were excluded because of the many other variables that influence road failures (e.g. thickness of fill, construction techniques, concentrated road run-off, etc.). In this analysis, categories of contributing area included small areas (<0.5 acres), medium sized areas (0.5-3.0 acres) and large areas (>3.0 acres). Areas were determined by a combination of air photo and GIS analysis and indicate a majority of the sediment delivery is occurring from slides where the contributing area is between 0.5 and 3.0 acres in size (Table A-6).

<u>Table A-6</u>. Sediment Delivery (tons) from Landslides for MRC Ownership in the Southcoast Streams WAU by Contributing Area.

Planning Watershed	Small Area <0.5 acres	Medium Area 0.5-3.0 acres	Large Area >3.0 acres
Mallo Pass Creek	5,690	2,446	11,920
Lower Alder Creek	17,333	19,635	21,115
North Fork Alder Creek	7,040	3,770	480
Lower Brush Creek	0	0	0
Upper Brush Creek	0	0	0
Point Arena Creeks	1,940	3,360	4,680
Southcoast Streams WAU	32,003	29,211	38,195

Intuitively, a majority of the sediment delivery is occurring from large contributing areas where pore pressure increases in response to precipitation events would be most significant.

A categorical description of the slope aspect for all shallow-seated failures was conducted. Despite the other variables that influence road related failures, as mentioned above, road related failures were included in this analysis. In this analysis slope aspect is determined as an absolute azimuth in the GIS and then categorically described as NE (0°-89°), SE (90°-179°), SW (180°-269°), or NW (270°-359°). Results are presented below (Table A-7).

<u>Table A-7</u>. Sediment Delivery (tons) from Landslides for MRC Ownership in the Southcoast Streams WAU by Slope Aspect.

Planning Watershed	NE	NW	SE	SW
Mallo Pass Creek	12,452	16,604	16,352	27,010
Lower Alder Creek	15,025	11,567	25,964	51,986
North Fork Alder Creek	2,622	3,124	7,528	16,576
Lower Brush Creek	300	0	512	1,024
Upper Brush Creek	500	0	0	0
Point Arena Creeks	3,940	4,157	3,006	15,279
Southcoast Streams WAU	34,839	35,452	53,362	111,875

A majority (69%) of the sediment delivery is occurring on slopes with a predominately south facing aspect. This may be attributed to the south to north direction that rain falls when storm events occur over in the area, resulting in increased pore water pressure increases on south facing slopes.

The distribution of shallow-seated landslides by soil type was analyzed to investigate the relationship between sediment delivery and soil type. The Mendocino County Soil Survey (Rittiman and Thorson, 2001) data includes a classification (USCS, Unified Soil Classification System) that describes the general properties of the soil. Criteria for mapping soil types and classifying them based on the USCS are presented elsewhere. Results are presented below (Table A-8).

Table A-8. Sediment Delivery from Landslides for MRC Ownership in the Southcoast Streams
WAU by Soil Type.

Planning Watershed	CL-ML ^a	SM^b	GM ^c	GC-GM ^d
Mallo Pass Creek	48,349	0	0	24,070
Lower Alder Creek	81,697	0	0	22,845
North Fork Alder Creek	14,620	0	6,130	9,100
Lower Brush Creek	300	0	0	1,536
Upper Brush Creek	0	0	0	500
Point Arena Creeks	22,381	4,001	0	0
Southcoast Streams WAU	167,347	4,001	6,130	58,051

^a CL-ML - predominately fine grained sands, silts, and clays

^b SM - predominately silty sand

^c GM - predominately silty gravels

^d GC-GM - predominately silty and clayey gravels

Results of this analysis reveal a majority of the sediment delivery is occurring from fine grained sand silts and clays, however, fine grained soils also make up a majority of the soils mapped in the Southcoast Streams WAU.

Historically, research on the influence of timber harvesting on slope stability has focused on clear-cutting, or even-aged management, where hydrologic changes are most pronounced. The effect of partial harvest, or uneven-aged management, on slope stability is less well known. This data should not be misinterpreted as present forest conditions on MRC lands have resulted in a majority of the ownership being in a state of partial harvest. The purpose of this analysis is to begin to generate a long term dataset on the relationship between forest conditions and landslide occurrence. Updates to this watershed analysis over time will build upon this dataset with the intention of identifying any emerging trends in the relationship between forest conditions and sediment delivery from partial harvesting.

The effect that forest stand conditions can have on sediment delivery from shallow-seated landsliding is investigated by attributing recent (2001-2004) non-road related failures with a forest inventory variable titled "structure class." Stands with similar forest attributes (dominant diameter, dominant vegetation, and canopy density) are described by their structure class as a tool for MRC to assess habitat conditions property wide. Generally, in this process vegetation strata

are delineated based on an air photo interpretation of individual similar stands, subsequent field sampling generates empirical information on tree species, diameter, and canopy, and similar strata are grouped together to generate structure classes for habitat description purposes. The findings are summarized below (Table A-9).

Slide ID	Structure Class	Dominant Veg.	Dominant Diameter	Canopy Closure
701	17	Conifer	<16"	40%-60%
703	12	Conifer/Hardwoods	16-24"	>60%
704	22	Conifer	16-24"	>60%
706	18	Conifer	16-24"	40%-60%
707	22	Conifer	16-24"	>60%
711	12	Conifer/Hardwoods	16-24"	>60%
712	1	Mixed Hardwoods	<8"	20%-40%

<u>Table A-9</u>. Forest Stand Attributes for Recent Non-Road Related Landslides on MRC Ownership in the Southcoast Streams WAU.

Sediment Input by Terrain Stability Unit

Total mass wasting sediment delivery for the Southcoast Streams WAU was separated into respective Terrain Stability Units. Sediment delivery statistics for each TSU are summarized in Table A-10.

Table A-10.	Total Sediment Delivery	y (in tons) by TSU in the	e Southcoast Streams WAU (tons)
-------------	-------------------------	---------------------------	---------------------------------

Sadimant Daliyany (tona)	TSU						
Sediment Delivery (tons)	1	2	3	4	5	8	
Road Related	39,268	32,432	32,171	31,498	0	0	
% of road related	29%	24%	24%	23%	0%	0%	
Non-Road Related	26,246	23,333	33,168	17,413	0	0	
% of non-road related	26%	23%	33%	17%	0%	0%	
Total	65,514	55,765	65,339	48,911	0	0	
% of total delivery	28%	24%	28%	21%	0%	0%	
Acres	592	1,315	761	9,829	570	382	
% of WAU area	4%	10%	6%	73%	4%	3%	
Ratio- delivery %/area %	6.3	2.4	4.9	0.3	0.0	0.0	

The TSU's with the largest estimated sediment delivery are TSU 1 and 3, which cumulatively are estimated to deliver 56% of the total sediment input for the Southcoast Streams WAU. Combining all high hazard units (TSU 1, 2, and 3) would yield 82% of the estimated non-road related sediment input on approximately 20% of the MRC owned acreage. Combining the moderate and low hazard units (TSU 4, and 5) would yield 17% of the estimated non-road related

sediment input off the remaining 80% of the property. One measure of the intensity of mass wasting processes in a given TSU is the amount of sediment produced divided by the area in the TSU. The last row in Table A-10 expresses landslide intensity as the ratio of the percentage of total sediment delivered by the percentage of watershed area in the TSU. A ratio of 1.0 would indicate that the map unit is producing a proportion of the sediment delivery equal to the proportion of the map unit area within the WAU. Values of this ratio greater than 1.0 indicate high landslide rates in a relatively concentrated area. The TSUs with the largest ratios were units 1, 2, and 3, with ratios of 6.3, 2.4, and 4.9, respectively. The smallest ratios are found in units 4, 5, and 8; 0.3, 0.0, and 0.0 respectively. The ratios suggest that the delineation of the high hazard Terrain Stability Units has captured the majority of the estimated sediment delivery from mass wasting over the past 62 years in the Southcoast Streams WAU.

CONCLUSIONS

In forest environments of the California Coast Range, mass wasting is a common, natural occurrence. In the Southcoast Streams WAU this is due to steep slopes, the condition of weathered and intensely sheared and fractured marine sedimentary rocks, seismic activity, locally thick colluvial soils, a history of timber harvest practices, and the occurrence of high intensity rainfall events. Mass wasting events are episodic and many landslides may happen in a short time frame. Mass wasting features of variable age and stability are observed throughout the Southcoast Streams WAU. A majority of the landslides visited in the field during this assessment occurred on slopes greater than 70%. Seeps and springs were evident in the evacuated cavity at many sites. Particular caution should be exercised when conducting any type of forest management activity in areas with convergent or locally steep topography.

Mass wasting sediment input is estimated to be at least 176 tons/sq.mi./yr. over the 1943-2004 time period for the entire Southcoast Streams WAU. However, approximately 73% of the shallow-seated landslides inventoried in the Southcoast Streams WAU are road associated (includes roads, skid trails, and landings). Road associated mass wasting represented 57% of the estimated sediment delivery, or at least 101 tons/sq. mi./yr of sediment over the 62 years analyzed. Road construction is thus a significant factor in the cause of shallow-seated mass wasting events. Improved road construction practices combined with design upgrades of old roads can reduce anthropogenic sediment input rates and mass wasting hazards.

The steep streamside areas of TSU 1, 2, and 3 contribute the highest amount of the sediment per unit area in the watershed. In the moderate and low hazard units of TSU 4 and 5, a large amount of road associated landslides are occurring, suggesting the need to make improvements on roads within the Southcoast Streams WAU.

REFERENCES

- California Department of Conservation, Division of Mines and Geology, 1997. Fault Rupture Hazard Zones in California, Special Publication 42, 47 p.
- California Geological Survey, 1999. Factors Affecting Landslides in Forested Terrain. State of CaliforniaDepartment of Conservation, Division of Mines and Geology Note 50, 5 p.
- Cruden, D.M. and Varnes, D.J. 1996. Landslide types and processes. In: Landslides Investigation and Mitigation, Transportation Research Board, Washington DC, Special Report 247: 36-75.
- Davenport, C.W., 1984a. Geology and Geomorphic Features related to Landsliding, Point Arena 7.5' Quadrangle, Mendocino County, California, California Division of Mines and Geology Open-File Report 84-46, scale 1:24,000.
- Davenport, C.W., 1984b. Geology and Geomorphic Features related to Landsliding, Eureka Hill 7.5' Quadrangle, Mendocino County, California, California Division of Mines and Geology Open-File Report 84-47, scale 1:24,000.
- Davenport, C.W., 1984c. Geology and Geomorphic Features related to Landsliding, Gualala 7.5' Quadrangle, Mendocino County, California, California Division of Mines and Geology Open-File Report 84-48, scale 1:24,000.
- Dietrich, W.E. and Montgomery, D.R., 1998. SHALSTAB; a digital terrain model for mapping shallow-landslide potential, NCASI Technical Report, February 1998, 29 pp.
- Dietrich, W.E., Real de Asua, R., Coyle, J., Orr, B., and Trso, M., 1998. A validation study of the shallow slope stability model, SHALSTAB, in forested lands of Northern California. Stillwater Sciences Internal Report, Berkeley, CA.
- Goodridge, J., 1997. California's rainfall records: 1862-1997. CD ROM. CD produced by USDA Forest Service, Pacific Southwest Research Station, Arcata, California.
- Keaton, J.R. and DeGraff, J.V., 1996. Surface Observation and Geologic Mapping. In: Landslides Investigation and Mitigation, Transportation Research Board, Washington DC, Special Report 247: 178-230.
- Manson, M.W., 1984a. Geology and Geomorphic Features related to Landsliding, Mallo Pass 7.5'Quadrangle, Mendocino County, California, California Division of Mines and Geology Open-File Report 84-13, scale 1:24,000.
- Manson, M.W., 1984b. Geology and Geomorphic Features related to Landsliding, Cold Spring 7.5' Quadrangle, Mendocino County, California, California Division of Mines and Geology Open-File Report 84-45, scale 1:24,000.
- Reeves, G.H., Benda, L.E., Burnett, K.M., Bisson, P.A., Sedell, J.R., 1995. A Disturbance-Based Ecosystem Approach to Maintaining and Restoring Freshwater Habitats of Evolutionary Significant Units of Anadromous Salmonids in the Pacific Northwest. American Fisheries Society Symposium, 17:334-349.
- Rittiman, C.A., and Thorson, T., 2001. Soil Survey of Mendocino County, California, Western Part. U.S. Department of Agriculture, Natural Resources Conservation Service, Posted web site at <u>http://www.ca.nrcs.usda.gov/mlra02/wmendo/eureka_qd.html</u>
- Selby, M.J., 1993. Hillslope materials and processes. Second Edition. Oxford University Press. Oxford.
- Sidle, R.C., Pearce, A.J., and O'Loughlin, C.L., 1985. Hillslope Stability and Land Use. Water Resources Monograph 11, American Geophysical Union, 140 p.
- Swanston, D.N., Lienkaemper, G.W., Mersereau, R.C., and Levno, A.B. 1988. Timber harvest

and progressive deformation of slopes in southwestern Oregon. AEG Bulletin, 25(3):371-381. Washington Forest Practice Board, 1995. Standard methodology for conducting watershed

analysis. Version 4.0. WA-DNR Seattle, WA.

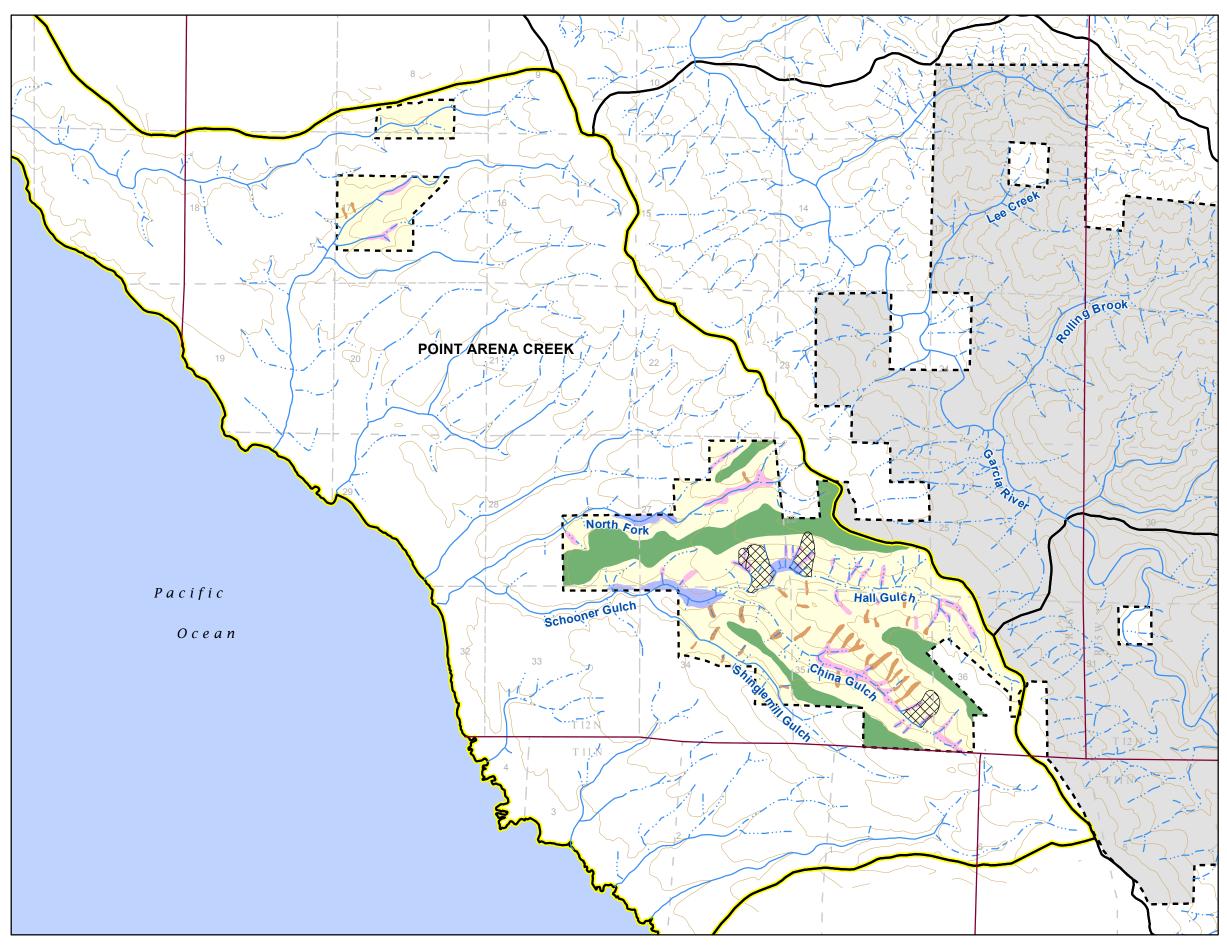
Wieczorek, G.F., 1996. Landslide Triggering mechanisms. In: Landslides Investigation and Mitigation, Transportation Research Board, Washington DC, Special Report 247: 76-90.

Coastal Rockport Mass Wasting Inventory Appendix A

Watershed	l: Sou	uthcoa	st Strea	ams									Sha	llow-sea	ted lands	lides									Dee	p-seate	d land	slides			Mass Wasting Inventory Sheet
Unious DW/C		the star Al	in Diverter	L e e de l'ale	TOU	Castainte		Cine	1	011-1-	0.4	Dem	Cod Dol	0-4	0.4	01		21	054-	Deed	Cartal	0-1	Otaura	Tee	Deater	1.44	Main	DC	Comolo	Calif	Mendocino Redwood Company, LLC
	T&R Air P Sec.# ve		ir Photo frame	Landslide Type	150	Certainty	Length	Size Width	Depth	Slide Vol.	Sed. Routing	Dom. Aspect	Sed. Del. Ratio	Sed. Delivery	Sed. Delivery	Slope A (field)				Road Assoc	Contrib. Area	Soil Type	Struc. Class		Body Morph.	Lat. Scarps	Main	DS Veq.	Complex	Field Obs	Comments
10# 0	<u>зес. #</u> ус	ai	Indiffe	DS DF DT	123	DPQ	feet	feet	feet	vd/3	PIN		25 50 75	yd^3	tons	(RSL	S M L	USCS	1 to	1 2 3	123	123	123		ΥN	Y N	Comments
				EF RS	456	51 0	1001	1001	1001	yu o		NW SW	100 (%))u 0	torio	(/0)				NI	0 111 2	0000	24	45	45	45	4 5	1204			
1 GP	27 1	952 15	K-143	DS	2	Р	80	40	5	593	Р	SW	40	237	320		N	С	S	Ν	L	CL-ML	22								
2 GP		952 15	K-143	DS	1	Q	40	40	5	296	Р	SE	40	119	160	I		Ρ	S	Ν	L	CL-ML	22								
3 GP		952 15		DS	5	D	80	80	5	1185	N	SW	0	0				Р	Ν	Ν	М	SM	21								
4 GP		952 15		DS	1	D	80	40	5	593	1	SW	40	237				С	н	N	M	SM	10								
5 GP 6 GP			K-113 K-113	DS DS	3	D P	80 160	80 80	5 5	1185 2370		SW SW	40 40	474 948			N N	C C	H	N	M	CL-ML CL-ML	10 9								
7 GP			K-113 K-113	DS	4	Р	80	40	5	593	1	SW	40	237				c	H	N	L	CL-ML	22								
8 CM			K-133	DS	3	D	160	160	5	4741	i	NW	40					C	S	N	L	CL-ML	10								
9 CM		952 15	K-133	DS	4	Р	80	40	5	593	Р	SW	50	296		85 I		С	S	Ν	L	CL-ML	10							Y	
10 CM			K-133	DS	4	D	80	40	5	593	Р	SW	40	237				С	S	Ν	S	CL-ML	10								
11 CM			K-133	DS	2	D	80	40	5	593	P	SW	40	237	320			С	S	N	L	CL-ML	10								
12 CM 13 CM		952 15 952 15	K-133 K-133	DS DS	3	P D	80 40	80 40	5 5	1185 296	1	SW SW	40	474			N N	C C	H	N N	M	GC-GM GC-GM									
14 CM			K-133 K-133	DS	1	D	40	40	5	296	P	SW	40	179			N	c	S	N	M	CL-ML	10							Y	
15 CM		952 15		DS	3	D	80	40	5	593		SE	40	237				c	H	N	L	GC-GM						1		<u> </u>	
16 CM	28 1	952 15		DS	3	D	160	80	5	2370	I	SW	40	948	1280		N	С	Н	N	L	GC-GM	10								
17 CM	32 1	952 15	K-155	DS	3	D	160	80	5	2370	1	SW	40	948	1280		N	Р	S	Ν	S	CL-ML	10								
18 CM		952 15		DS	3	Р	80	80	5	1185	1	SE	40	474				С	н	N		CL-ML	17								
19 CM		952 15		DS	3	P	80	80 40	5	1185		SW	40	474				C C	Н	N	L	CL-ML	13								
20 CM 21 CM		952 15 952 15		DS DS	2	D	80 160	240	5 6	593 8533	P	NE SE	40	237 2133				P	S S	N N	S S	CL-ML CL-ML	18 13							v	
22 CM			K-133	DS	4	P	240	160	5	7111		NW	40	2133				C	н	N	L	CL-ML	17								
23 CM		952 15		DS	4	D	160	160	5	4741	i	NW	40	1896				C	H	N	L	GC-GM									
24 CM		952 15		DS	2	Р	160	80	4	1896	Р	SE	40	759				С	S	S		GC-GM									
25 CM			K-134	DS	3	D	80	160	4	1896	Р	SW	40	759				С	S	S		GC-GM									-
26 CM		952 15		DS	3	D	160	160	4	3793	P	SW	40	1517				С	S	S		GC-GM									
27 CA 28 CA		952 15 952 15	K-134	DS DS	3	P D	80 80	80 80	4	948 948		SE SE	40 75	379 711			N N	C C	H S	S N	м	CL-ML CL-ML	22 22							Y	
29 CA			K-134 K-134	DS	1	D	160	80	12	5689	P	SW	50	2844			N	c	S	N	S	CL-ML	13							Y	
30 CA			K-134	DS	1	D	160	80	5	2370	P	SE	75	1778			N	C	S	N	Ĺ	CL-ML	10							Y	
31 CA			K-134	DS	1	D	160	80	8	3793	Р	SW	75	2844			N	С	S	Ν	L	CL-ML	10							Y	
32 CA			K-134	DS	2	Р	80	40	5	593	1	NE	40	237				С	S	Ν	S	CL-ML	22								-
33 CA			K-134	DS	1	D	160	80	5 5	2370	P	NW	40	948				С	S	N	L	CL-ML	10								
34 CA 35 CA			K-134 K-134	DS DS	2	D	80 80	40 160	5	593 2370		SW SW	40	237 948				C P	H S	N	M	CL-ML CL-ML	21 10								
36 GW			K-134	DS	3	D	80	80	4	948	i	SW	40	340				C	н	S	5	GC-GM	22								
37 CA			-197	DS	4	D	80	80	5	1185	1	SE	40	474			N	С	Н	Ν	М	CL-ML	7								
38 CA			-197	DS	3	D	80	80	5	1185	I	SW	40	474			N	С	Н	Ν	М	GC-GM									
39 CA			-197	DS	4	D	80	40	5	593	1	SW	40	237			N	С	Н	N	L	GC-GM									-
40 CA			-197	DS DS	3	DD	160 80	80 40	5 5	2370 593		SW SE	40 40	948 237				C C	H H	N N	M	GC-GM GC-GM	10								
41 CA 42 CA		952 6K 952 6K	-197	DS	3	D	80	40	5	593	1	SW	40	237	320		N	c	н	N		GC-GM									
43 CA		952 6K		DS	3	D	80	40	5	593	i	SW	40	237			N	c	H	N		GC-GM						1			
44 CA		952 6K		DS	3	D	80	40	4	474	I	NW	40	190				Č	Н	S		GC-GM									
45 CA		952 6K		DT	2	D	160	80	5	2370	Р	NE	40	948			N	С	Н	Ν	S	CL-ML	22								500 foot torrent track
46 CA		952 6K		DS	3	D	80	80	5	1185	P	NE	40	474			N	C	S	N	S	CL-ML	22								
47 CA 48 CA		952 6K		DS DS	1	D	80 80	40 80	5 5	593 1185	P	NE NE	40	237 474			N N	C C	S S	N N	L	CL-ML CL-ML	22 22					-			
48 CA 49 CA		952 6K		DS	2	D	80	80	5	1185	P	NE	40	474				c	S	N		CL-IVIL	22					-			
50 CA		952 6K		DS	2	D	80	80	5	1185	P	SE	40	474			N	С	S	N		CL-ML	22					1			
51 CA	15 1	952 6K	-198	DS	3	D	80	40	4	474	Р	SW	40	190	256	1	N	С	S	S		CL-ML	12								
52 CA		952 6K		DT	2	D	80	80	5	1185	Р	SE	40	474				С	S	Ν	S	CL-ML	22								on DSL 500 foot torrent track
53 CA		952 6K		DS	1	D	80	80	5	1185	P	SE	40	474				С	S	N	L	CL-ML	22					-			on DSL
54 CA 55 CA		952 6K		DS DS	1	D	80 80	80 80	5 5	1185 1185	P	SE SW	40 40	474 474				C C	S S	N N	S M	CL-ML GC-GM	22 10	-							on DSL
56 CA		952 6K		DS	2	D	160	80	5	2370	Р	NE	40	948			-	c	S	N		CL-ML	21					1			
57 CA		952 6K		DS	3	P	80	40	5	593	P	SW	40	237				c	s	N	M	GC-GM						1		1	
58 CA	12 1	952 6K		DS	3	D	80	40	5	593	1	SE	40	237	320		N	С	Н	Ν	S	GC-GM									
59 CA		952 6K		DS	3	Р	80	40	5	593	Р	NE	40	237				С	S	Ν	S	CL-ML	22								on toe of DSL
63 CN			-178	DS	3	D	160	80	5	2370	1	SE	40	948			N	С	н	N	S	CL-ML	10								
64 CN 65 CN		952 7K 952 7K	-178 -178	DS DS	3	P D	160 40	160 40	5 5	4741 296	I P	SE SE	40 40	1896 119				C P	H S	N N	S M	CL-ML GC-GM	10 18								
66 CN			-178	DS	2	D	40 80	40	5 5	296	P	NW	40	237				C	S	N	S	GC-GM									⁻
67 CN			-178	DS	2	P	40	80	5	593	P	SE	40	237				c	s	N	M	GC-GM									
68 CN		952 7K		DS	2	D	40	40	5	296	P	SW	40	119			N	P	S	N		GC-GM									

Watershe	ed:	South	coast Stre	ams									Sha	llow-sea	ted lands	lides								Dee	p-seate	d land:	slides			Mass Wasting Inventory Sheet
																					-									Mendocino Redwood Company, LLC
Unique PWS ID#	T & R Sec. #	Air Photo vear	Air Photo frame	Landslide Type	TSU	Certainty	l enath	Size Width	Depth	Slide Vol.	Sed. Routing	Dom. Aspect	Sed. Del. Ratio	Sed. Delivery	Sed. Delivery	Slope Age (field)	Slope Form	Slide	Road	Contrib	 Soil Type 	Struc. Class	Toe	Body Morph.	Lat. Scarps	Main Scarps	DS Veq.	Complex	C Field Obs.	Comments
ID#	Sec. #	year	Irame	DS DF DT	123	DPQ	feet	feet	feet	yd^3	PIN		25 50 75	yd^3	tons	(%) NRC		H S I N	RSL	S M	L USCS	1 to	123	1 2 3	123	1 2 3		ΥN	Y N	
				EF RS	456							NW SW	100 (%)						NI			24	45	45	45	45				
69 CN	22	1952	7K-178	DS	4	D	40	40	5	296	Р	NW	40	119	160	N	Р	S	N	S	GC-GM	10								
70 CN	24	1952		DS	4	D	80	40	5	593	1	SW	40	237	320	N	С	Н	N	S	CL-ML	10								
71 CN	25	1952		DS	4	D	40	40	5	296		SW	40	119		N		н	N	S	CL-ML	22								
72 CN 100 GP	25 34	1952 1963		DS DT	3	D	80 80	40 40	5	593 474	P	SW SW	40 40	237 190	320 256	N		H H	N S	S	CL-ML SM	10								1000' torrent track
101 GP	34			DS	1	P	120	80	4	1422	P	NW	50	711	960			S	N		CL-ML	22							Y	
102 GP	26	1963		DS	4	Р	80	60	4	711	Ν	SW	0	0	0		С	Ν	R		CL-ML	21							Y	
103 GP	27		6-90	DS	1	Q	120	80	4	1422	P	NW	40	569		N	С	S	S		CL-ML	22								
104 GP 105 GP	26 26		17-49 17-49	DT DS	2	D P	80 80	60 60	5	889 711	P	SE SW	50 40	444 284	600 384	60 N	C C	H S	R		SM CL-ML	22							Y	500' torrent track
105 GP	35		17-49	DS	2	Q	60		4	444	P	NE	40	178	240	N	C	S	N		CL-ML	21					-			
107 GP	17	1963	17-93	DS	2	D	40	40	5	296	Ι	NW	40	119	160	N	С	S	N	S	CL-ML	22								
108 GP	17		17-93	DS	2	D	80	60	5	889	Р	NW	40	356		N	Р	S	Ν	S	CL-ML	22								
109 CA	17		17-100	DS	1	D	40	40	4	237	N P	SE	0	0			C C	Н	R		CL-ML	10							Y	
110 CA 111 CA	17 17		17-100	DS DF	1	D	40 80	20 40	2	59 237	P	SW SW	25 25	15 59			C	S S	R R		CL-ML CL-ML	10							Y	240' runout
112 CA	17		17-100	DF	2	D	160	80	4	1896	P	NE	40	759		N N	P	S	S	-	CL-ML	1							<u> </u>	
113 CA	17	1963	17-100	DS	1	D	40	40	2	119	Р	SW	50	59	80	85 N	Р	Ν	R	L	CL-ML	10							Y	
114 CA	16		17-100	DS	4	D	120	60	4	1067	Р	NE	40	427		N		S	S		CL-ML	10								
115 CM 116 CM	4		17-101	DF DS	2	P P	40	40 60	4	237 1067		SW SW	40 40	95 427		N	C	H S	S S		GC-GM GC-GM									200' runout
117 CM	32		17-101	DS	4	D	40	40	4	237	P	SW	40 25	427			C	S	R		CL-ML	10							v	on DSL toe slopes
118 CM	32		17-102	DS	4	D	60	40	4	356	P	SE	25	89			P	S	L		CL-ML	10							Ý	
119 CM	32	1963	17-102	DS	1	D	40	60	4	356	Р	SW	100	356				S	R		CL-ML	10							Y	
120 CM	32		17-102	DS	1	D	60	60	4	533	Р	SW	40	213		N	С	Н	S		CL-ML	21								
121 CM 122 CM	32 32	1963	17-102	DS DS	2	D	80 60	60 80	4	711 711	P	NE NE	40 40	284 284	384 384	N	C C	S N	S S		CL-ML CL-ML	10			-					
122 CM	32		17-102	DS	1	D	40		4	296	P	NE	40 50	264		80 N	C	S	S		CL-ML	21							Y	240' runout
124 CM	32	1963		DS	1	D	160	160	4	3793	P	NE	100	3793	5120		C	S	S		CL-ML	21							Ý	
125 CM	33	1963	17-102	DF	1	D	60	60	3	400	Р	NE	75	300	405	100 N	С	S	S		CL-ML	21							Y	400' runout
126 CM	33	1963		DF	1	D	120	160	4	2844	Р	NE	25	711	960	90 N	С	S	S		CL-ML	17							Y	400' runout
127 CM 128 CM	33 33	<u>1963</u> 1963	6-103	DS DS	1	D	60 60	80 80	4	711 711	P	SW SE	75 25	533 178	720 240	65 N 90 N	C P	S S	R		CL-ML CL-ML	10 17							Y	
120 CM	33	1963		DS	1	D	80	80	3	711		SE	50	356	480	80 N	P	S	S		CL-ML	17							Y	
130 CM	4	1963		DF	4	Q	60	40	4	356	Ì	NW	40	142		N	C	Ĥ	R		CL-ML	13								500' runout
131 CM	4	1963		DS	4	D	80		4	711	Ν	NE	0	0		N	С	Ν	R		GC-GM									
132 CM 133 CM	4	1963 1963		DS DS	3	D	80 60	60 40	4	711 356	1	NE SE	40 40	284	384 192	N	P	N S	R S		GC-GM GC-GM									
133 CIVI 134 CM	4			DS	2	P	60	40	4	356		SW	40	142 142		N		H	S		GC-GM									
135 CM	3			DS	2	D	80		4	711	i	SW	40	284	384	N		N	s		GC-GM									
136 CM	3	1963	6-103	DF	3	D	60	60	4	533	1	SW	40	213	288	N		Н	S		GC-GM	15								800' runout
137 CM	3	1963		DF	3	D	60		4	533	- 1	SW	40	213	288	N		н	S		GC-GM									800' runout
138 CM 139 CM	34	1963		DS	2	D	40 40		4	356 356		SW SW	40 40	142		N	P	S	S		GC-GM GC-GM									on DSL toe on DSL toe
139 CM	34 34		6-103 6-103	DS DS	3	D	40	80	4	356 948		SVV	40	142 379		N		N H	S S	-	GC-GM								-	
141 CM			6-103	DS	1	D	40	80	4	474		SE	40	190		N		S	R	1	CL-ML	10							1	+
142 CM	33	1963	6-103	DS	3	D	40	60	4	356	Î	SE	40	142		N	Р	S	R		CL-ML	13								
143 CM			6-103	DS	4	D	40	80	4	474	N	SE	0	0		N		N	S		GC-GM	13								<u> </u>
144 CM 145 CM	34 28		6-103 6-103	DS DF	3	D Q	60 40	60 40	4	533 237		SE SE	40 40	213 95		N		H N	S S		GC-GM GC-GM								-	400' runout
145 CM	28		6-103	DF	4	P	60	80	4	711	1	SW	40	284		N		S	S	1	GC-GM								+	Hoo runout
147 CM			6-103	DS	2	D	60	60	4	533	Ì	SW	40	213		N		Ĥ	S		GC-GM								1	
148 CA	10		6-100	DF	2	D	240	160	5	7111		SW	40	2844		N		N	N	М	CL-ML	22								on DSL 1400' runout
149 CA	4		6-100	DS	4	D	60	60	4	533		SE	40 40	213	288	N		N	S		CL-ML	22			-				-	<u> </u>
150 CA 151 CA	9			DS DS	4	D	60 60	40 80	4	356 711		NE SW	40 40	142 284	192 384	N		N N	S S		CL-ML CL-ML	22 12								+
151 CA	9			DG	4	D	40		4	237	1	SE	40	95		N		S	R		CL-ML	21								200' runout
153 CA	9	1963	6-100	DS	1	D	40	40	4	237	P	SE	40	95	128	N	Р	S	S		CL-ML	21								
154 CA	9		6-100	DF	1	D	80	60	4	711	P	SE	40	284	384	N	С	Н	R		CL-ML	24								1200' runout
155 CA	16			DS	4	D	60	120	4	1067	1	NE	40	427		N	C	Н	S	<u> </u>	CL-ML	10							<u> </u>	<u> </u>
156 GW 157 GW	15 15		6-99 6-99	DS DS	3	P	60 80		4	356 948		SE SW	40 40	142 379		N	C C	H N	S S		GC-GM GC-GM								-	<u> </u>
157 GW	22		6-98	DS	3	D	60		4	946 356		SE	40	142		N	C	H	S	+	GC-GM	10							1	240' runout
159 GW	22	1963		DS	4	D	40	40	4	237		SE	40	95		N	С	S	S		GC-GM								1	
160 CA			17-56	DS	2	D	80		4	474		NE	40	190		N		S	S		CL-ML	18								

Watershe	ed:	South	coast Stre	ams									Sha	low-sea	ted lands	lides									Dee	o-seate	d lands	slides			Mass Wasting Inventory Sheet
								· · · · ·														r									Mendocino Redwood Company, LLC
Unique PWS	T & R Sec. #		Air Photo frame	Landslide	TSU	Certainty	Length	Size Width	Depth	Slide Vol.	Sed. Routing	Dom. Aspect	Sed. Del. Ratio	Sed. Deliverv	Sed. Deliverv	Slope A (field)		Slope Form	Slide Loc.	Road Assoc.	Contrib. Area	Soil	Struc. Class	Toe Activity	Body Morph.	Lat. Scarps	Main Scarps	DS Veg	Complex	Field Obs.	Comments
ID#	Sec. #	e year	Irame	Type DS DF DT	123	DPQ	feet	feet	feet	yd^3	PIN	NE SE	25 50 75	yd^3	tons	1 /			HSIN	R S L	S M L	Type USCS	1 to	123	1 2 3	123	1 2 3	1234	ΥN	Y N	Continents
				EF RS	456	0.4	1001	1001	1001	ju o		NW SW	100 (%)	,4 0	torio	()0) 11	NO C	001		NI	0 111 2	0000	24	45	45	45	45	1204			
161 CA	13	1963	3 17-56	DS	3	D	60	60	4	533	Ν	SW	0	0	0		N	С	Н	S		CL-ML	13								on DSL crown
162 CA	13			DS	2	D	160	160	5	4741	Ι	SW	40	1896			N	Р	S	Ν	S	CL-ML	13								on DSL toe
163 CA	13			DS	4	D	60	40	5	444	I	SW	40	178			N	С	S	Ν	S	GC-GM	12								
164 CA 165 CA	13 13			DF DS	2	D	60 160	40 240	5 5	444 7111		SW SW	40 40	178 2844			N	C P	S S	N N	M	GC-GM GC-GM	21 21								400' runout
165 CA	13			DS	2	D	40		э 4	237	-	SW	40	2844			N N	C	N	S	IVI	GC-GM	21								240' runout
167 CA	11			DS	1	D	160		5	7111	P	SW	40	2844			N	P	S	N	L	CL-ML	22								on DSL toe
168 CA	11		3 17-56	DS	1	D	80		5	593	Р	NW	40	237			N	С	S	Ν	L	CL-ML	22								
169 CA	11		3 17-56	DS	2	D	60		4	533	Р	SW	40	213			N	С	S	S		GC-GM	22								
170 CA 171 CA	11 11		3 17-56 3 17-56	DS DS	1	D	60 80		5 5	444 889	Р	SE SE	40 40	178 356			N N	P P	S S	N N	L	CL-ML CL-ML	22 22								on DSL toe on DSL toe
171 CA	10		3 17-56 3 17-56	DS	4	D	60	60	5	667	P	SW	40	267			N	C	H	N	M	CL-ML	10								400' runout
173 CA	15		3 17-56	DS	2	D	60	40	5	444		NE	40	178			N	С	S	N	L	CL-ML	22								loo landat
174 CA	10		8 17-56	DS	2	D	60	60	5	667	Ι	NE	40	267			N	С	S	Ν	L	CL-ML	22								
175 CA	2		3 17-58	DF	3	D	60		5	667	1	SE	40	267			N	С	н	N	S	CL-ML	13								
176 CA 177 CA	31		3 4-83 3 4-83	DS DS	3	D	80 40	60 40	4	711 237	-	SW	40 40	284 95			N N	C C	H S	S S		GC-GM GC-GM	10 21							-	
178 CN	5		3 4-83	DS	4	D	160	160	4	3793	-	SW	40	1517			N	c	н	S		CL-ML	22								
179 CN	5			DS	3	D	60	40		356	i	SW	40	142	192		N	Ċ	S	S		CL-ML	5								
180 CN	5		3 4-83	DS	3	D	60	60	4	533	-	SW	40	213			N	С	S	S		GC-GM	5								
181 CA 182 CA	6		3 4-83 3 4-83	DS DS	4	D	80 80	60 60	5	889 711	-	SE SE	40	356 284			N N	P C	S	N	S	GC-GM	21 22								on DSL toe
182 CA	6 12		3 4-83	DS	4	D	60	80	4	711	P	SE	40 40	284			N	P	S S	S S		GC-GM GC-GM	10								on DSL loe
184 CA	12			DS	4	D	80	80	4	948	· 	NE	40	379			N	P	N	S		GC-GM	22								on DSL lateral scarp
185 CA	12			DS	3	D	80		4	948	Ι	SE	40	379			N	С	Ν	S		GC-GM	22								on DSL lateral scarp
186 CN	9		3 17-32	DS	1	D	80	80	4	948	Р	NE	40	379			N	С	S	S		GM	5								
187 CN 188 CN	9			DS DS	3	D	80 60	60 60	4	711 533	Р	SE SW	40 40	284 213			N N	C C	S S	S S		GM GM	12 5								
189 CN	9			DS	1	D	160	60	4	1422	P	SE	40	569			N	P	s	S		GM	5								
190 CN	15			DS	1	D	40	40	4	237	Р	SW	40	95			N	Р	S	S		GM	12								
191 CN	16			DS	2	D	80	60	4	711	Ι	SE	40	284			N	С	н	S		GC-GM	5								
192 CN 193 CN	15 15			DF DS	2	D	120 240	60 120	4	1067 5333	-	SW SW	40 40	427 2133			N N	C C	H S	S N	м	GC-GM CL-ML	13								480' runout
193 CN	22			DS	3	D	60	80	5	889		SE	40	356			N	c	S	N	L	CL-ML	10								
195 CN	23	196		DS	2	D	60	60	4	533	i	NW	40	213			N	P	S	S		GC-GM	22								
196 CN	23			DS	2	D	60	60	4	533	Ι	SW	40	213			N	Ρ	S	S		GC-GM	10								
197 CN 198 CN	27 27			DS DS	3	D	60 60	40 60	4	356	-	SW	40 40	142 213			N	C	N N	S		GC-GM GC-GM	18								
198 CN	27			DS	2	D	40		4	533 237		SW NW	40	213			N N	C C	N	S S		GC-GM	18 18								
200 CN	27			DS	3	D	160	120	5	3556	P	SW	40	1422			R	P	S	N	S	CL-ML	1								irregular slopes
201 CN	26	1963	8-160	DS	4	D	60	60	4	533	Р	SE	40	213			N	Р	S	S		GC-GM	22								
202 CN	26		8 8-160	DS	4	D	80		4	711	1	NE	40	284			N	С	Ν	R		GC-GM	12								
203 CN 204 CN	26 26	196	8 8-160 8 8-160	DS DS	2	D D	40 60	40 40	4	237 356	1	NW SE	40 40	95 142			N N	C P	S S	S S		GC-GM GC-GM	22 22							-	
204 CN			8 8-160	DS	3	P	40		4	356	i	SE	40	142			N	C	S	S		GC-GM	12								
206 CN	25	1963	8-160	DS	4	D	60	80	4	711	Ι	NW	40	284	384		N	Р	Ν	R		GC-GM	22								Mtn View Rd cutslope failure
207 CM	32		3 17-102	DS	3	D	80	60	4	711	Р	SE	40	284			N	С	N	S		CL-ML	22								
208 CA 209 CA	17			DS DS	1	D	100 85	60 150	3	667 1889	P	SW SW	75 50	500 944			0	P P	S S	R		CL-ML CL-ML	10 10							Y	
209 CA 210 CM	33		field obs.	DS	1	D	80	120	4	1422	P	SW	25	356			8	P	S	R		CL-ML	10							Y	
300 GP	28		3 3-3	DS	2	Q	130	100	5	2407	· 	NE	40	963			N	С	N	N	S	SM	21							· ·	
301 GP	34	1978	3-3	DS	1	D	65	65	4	626	Р	SE	40	250	338		N	Р	S	S		CL-ML	22								
302 GP	27		3 3-3	DS	2	D	65	65		626		SW	40	250			N	С	N	S		CL-ML	22								
303 GP 304 GP	34 34		3 3-3 3 3-3	DS DS	1	D	65 100	65 65	4	626 963	P P	SW SE	40 40	250 385			N N	P P	S S	S S		CL-ML CL-ML	22 22								
305 GP	34			DS	4	P	65	130	3	903	P	NW	75	704			R	P	S	R		CL-ML	22							Y	
306 GP	34	1978	3-3	DS	3	D	200	65	5	2407	I	NE	40	963	1300		R	С	Н	Ν	М	CL-ML	21								
307 GP	27	1978	3 3-3	DS	2	Р	65		4	626		SE	40	250			N	С	N	R		CL-ML	22								
308 GP 309 GP	27 35		3 3-3 3 4-3	DS DS	2	D	65 65		4	626 626	I P	NW SW	40 40	250 250			N N	P C	S N	S S		CL-ML CL-ML	22 22								
309 GP 310 GP	35			DS	2	D	100	65	4	963	P	SW	40	385			N	c	N	S		CL-ML	22							-	
311 GP	26		3 4-3	DF	4	D	260	100	4	3852	P	SW	50	1926			N	С	N	N	L	CL-ML	10							Y	on DSL
312 GP	26	1978	8 4-3	DF	2	D	100	65	5	1204	Ι	SE	40	481	650		N	С	Н	Ν	М	SM	13								400' runout
313 CA	17			DS	4	D	100	130	4	1926	N	SW	0	0	-		N	С	N	R		CL-ML	10							Y	cutslope failure
314 CA	17	1978	8 2-5	DS	1	D	65	65	5	782	Р	NW	25	196	264	100	N	С	Ν	S		CL-ML	10					1		Y	


Watershe	ed:	South	coast Stre	ams									Sha	llow-sea	ted lands	lides								Dee	p-seate	d land:	slides			Mass Wasting Inventory Sheet
Uninua DW/C	тер	Air Dhate	Air Dhata	l en delide	TOU	Contribution		Size	1	054-	0	Dem	Cod Dol	0-4	0-4	Class Ass	Class	Olivia	Deed	Centrik	0-1	Oterus	Tee	Dert	1	Main	50	Comolo	Field	Mendocino Redwood Company, LLC
Unique PWS	T & R Sec. #		Air Photo frame	Landslide Type	TSU	Certainty	Length	Width	Depth	Slide Vol.	Sed. Routing	Dom. Aspect	Sed. Del. Ratio	Sed. Deliverv	Sed. Delivery	Slope Age (field)	Slope	Slide	Road Assoc.	Contrib. Area	. Soil Type	Struc. Class	Toe Activity	Body Morph.	Lat. Scarps	Scarps	DS Veg.	Complex	Obs.	Comments
10/1	000. //	Jou	Indinio	DS DF DT	123	DPQ	feet	feet	feet	yd^3	PIN	NE SE	25 50 75	yd^3	tons	(%) NR(HSIN	RSL	S M L	USCS	1 to	123	123	123	123	1234	ΥN	Y N	
				EF RS	456							NW SW	100 (%)						NI			24	45	45	45	45				
315 CA				DS	1	D	65	65	4	626	Ρ	NW	25	156		90 N		N	S		CL-ML	10							Y	
316 CA 317 CA	16 16		2-5	DS DF	1	D	65 65	100 65	4	963 626	P	NW NW	40 40	385 250		N		S N	S R		CL-ML CL-ML	12 10								600' runout
317 CA	16		2-5	DF	1	D	100	65	4	963	Р	NW	40	385		N		S	S		CL-ML	12								
319 CA	16		2-5	DS	1	D	100	65	4	963	P	NW	40	385		N		S	S		CL-ML	12								
320 CA	16		2-5	DS	1	D	65	65	4	626	Р	NW	40	250		N		S	S		CL-ML	12								
321 CA	9		2-5	DF DS	1	D	130 100	100	4	1926 1926	P	SW	40 40	770		N		N N	R		CL-ML CL-ML	12								800' runout
322 CA 323 CA	16		2-5	DS	4	D	65	130 65	4	626	Р 	SW NE	40	250		N		N	S		CL-ML	10								
324 CA	16		3-4	DS	3	D	100	65	4	963	i	SW	40	385		N		N	S		CL-ML	10								
325 CA	9			DS	1	D	100	65	4	963	Р	NW	40	385		N	С	S	R		CL-ML	24								
326 CA 327 CA	9		3-5 3-5	DS DS	3	D	65 65	65 65	4	626 626		SE SW	40 40	250 250		N		N N	R R		CL-ML CL-ML	22 10								
327 CA 328 CA	9		3-5	DS	3	D	65	65	4	626		SW	40	250		N		N	R		CL-IVIL CL-ML	10								
329 CA	9		3-5	DS	2	D	65	65	4	626	i	SW	40	250		N		S	S		CL-ML	12								
330 CA				DS	1	D	65	100	4	963	Р	NW	40	385		N		S	R		CL-ML	10								
331 CA	9		3-5	DS	1	D	100	100	4	1481	P	NE	40	593		N		S	R		CL-ML	10								
332 CA 333 CA	9			DS DS	2	D	100 65	65 65	4	963 626	P N	NE NE	40	385		N N		H N	R S	+	CL-ML CL-ML	10					-		-	
334 CA	10	1978	3-5	DS	4	D	65	65	4	626	Р	NE	40	250	338	N	С	S	S		CL-ML	10								
335 CM				DS	1	D	100	65	3	722	Р	SW	50	361	488	80 N		S	R		CL-ML	13							Y	
336 CM			2-8	DS	2	D	100	130	2	963	P	SE	25 40	241		70 N		S	R		CL-ML	13							Y	
337 CM 338 CM			2-8	DS DS	3	D	195 65	65 65	4	1878 626	P	SE SW	40	751 250	1014 338	N		H N	S S		CL-ML CL-ML	17 17								
339 CM			2-8	DS	4	D	65	100	4	963	P	SE	40	385		N		N	S		CL-ML	17								
340 CM	32	1978	2-8	DF	1	D	100	65	4	963	Р	NW	40	385		N		N	S		CL-ML	21								500' runout
341 CM 342 CM			2-8	DS DS	2	D	65 100	65 100	4	626 1481	P	NE SW	40 40	250 593		N		N S	S S		CL-ML CL-ML	10 10								
342 CM				DS	1	P	100	65	4	722	P	NE	100	722		90 N	C	S	S		CL-IVIL	17							Y	
344 CM				DS	1	D	65	65	2	313	Р	SW	100	313		100 N	Р	S	R		CL-ML	10							Ý	recent reactivation
345 CM				DS	1	Р	65	65	3	469	Р	SW	50	235		80 N	Р	S	R		CL-ML	10							Y	
346 CM 347 CM				DS DS	3	D P	100 65	65 65	4	963 626	N	NE SE	0 40	0 250		75 N		N S	S S		CL-ML CL-ML	17							Y	
347 CM				DS	3	D	195	100	4	2889	P	SW	40	1156		N		H	S		CL-ML	13								700' runout
349 CM				DS	1	D	65	65	3	469	P	NE	75	352		95 N		S	S		CL-ML	17							Y	
350 CM				DS	1	Q	65	65	3	469	Ν	SE	0	0		85 N		S	N	L	CL-ML	17							Y	
351 CM 352 CM			2-8	DS DS	3	D	100 130	65 100	4	963 1926	P	SW	40 40	385 770		N		S H	S S		CL-ML CL-ML	10 10								
353 CM			2-8	DS	2	D	100	130	4	1926		SW	40	770		N		H	S		CL-ML	10								
354 CM			2-8	DS	3	D	130	100	4	1926	i	SW	40	770		N		H	S		GC-GM									
355 CM	28	1978	2-8	DS	4	D	65	65	4	626	Р	SW	40	250		N		S	S		CL-ML	22								
356 CM 357 CM		1978	2-8	DS DS	3	D	100 100	100 65	4	1481 963	N	SW NW	0 40	0		N N		H S	S R		GC-GM GC-GM	21 17								
357 CM			3-7	DS	3	D	65	100	4	963	-	SE	40	385		N		S	R	+	GC-GM	17								
359 CM	3	1978	3-7	DS	4	D	100	100	4	1481	1	NW	40	593	800	N	С	S	R		GC-GM	10								
360 CM				DS	2	D	65	65	4	626		NE	40	250		N		S	S		GC-GM									
361 CM 362 CM		1978	3-7	DS DT	1	P D	65 100	130 65	4	1252 963	P	NE NE	40 40	501 385		N		S N	S S		CL-ML GC-GM	10 13								400' torrent track
363 CM				DS	4	D	100	65	4	963	P	NE	40	385		N		S	S	1	CL-ML	22							1	
364 CM	4	1978	3-7	DS	1	D	65	65	4	626	Р	NW	40	250	338	N	С	S	S		CL-ML	22								
365 CM				DS	1	D	65	100	4	963	P	NW	40	385		N		S	S	L	CL-ML	10								
366 CM 367 CM				DS DS	1	D	65 100	65 65	4	626 963	P P	NW SE	40 40	250 385		N		S S	S S	-	CL-ML CL-ML	10 10								
367 CM				DS	4	Q	65	100	4	963	P N	SE	40	365		N		N	S		GC-GM	13							-	
369 CM	34	1978	3-7	DS	2	D	100	100	4	1481	Р	SE	40	593	800	N	P	S	S		GC-GM	22								
370 CM			3-7	DS	4	D	65	100	4	963	P	SE	40	385		N		S	S	<u> </u>	GC-GM	21		_						
371 CM 372 CM	34 34		3-7	DS DF	2	D	100 100	65 100	4	963 1481	P	SE SW	40 40	385 593		N		S H	S S		GC-GM GC-GM	17 10								500' runout
372 CM		1978		DF	4	D	65	100	4	963	-	NW	40	385		N		S	S	+	GC-GM	10								
374 CA	14	1978	4-3	DS	3	D	100	65	4	963	N	NW	0	0	0	N	С	N	S		CL-ML	22								on DSL crown
375 CA	14			DS	2	D	65	100	4	963	Р	SW	40	385		N		S	S		GC-GM	10								
376 CA	11			DS	3	D	195 65	100 65	4	2889	N P	SW SE	0 40	0		N	P	N S	S S		GM CL-ML	13 22								
377 CA 378 CA	11	-		DS DF	2	D	100	65	4	626 963	P	NE	40	250 385		N		N	R	-	GC-GM									400' runout
379 CA			4-3	DS	2	D	100	65	4	963	P	NE	40	385		N		N	S		GC-GM						1			

Watersh	ed:	Sout	hcoast Stre	eams									Sha	llow-sea	ted lands	lides								Deep-seat	ed land	slides			Mass Wasting Inventory Sheet
																													Mendocino Redwood Company, LLC
Unique PW		R Air Ph		Landslide	TSU	Certainty		Size		Slide	Sed.		Sed. Del.	Sed.	Sed.	Slope Age					Soil	Struc.	Toe Bo				Complex	Field	
ID#	Sec	c. # year	frame	Type DS DF DT	123	DPQ	Length feet		epth eet	Vol. yd^3	Routing P I N	Aspect NE SE	Ratio 25 50 75	Delivery yd^3	Delivery tons	(field) (%) N R	Form	Loc. H S I N	Assoc.	Area S M L	Type USCS	Class 1 to	Activity Mor 123 12				ΥN	Obs. Y N	Comments
				EF RS	456	DPQ	Teet	Teet	sel	yor's	PIN	NE SE NW SW	25 50 75	yur 3	tons	(%) NR	JCDP	п 51 г	NI	S IVI L	0303	24		5 45		1234	T IN	TIN	
380 CA	-	11 19	78 4-3	DS	4	D	65	100	Δ	963	Р	SW	40	385	520	R	С	N	S		GC-GM	22		0 10					
381 CA		2 19		DS	3	D	100	65	4	963	P	SW	40	385		R		H	S		GC-GM	10							
382 CA		11 19		DS	1	D	65	65	4	626	P	SE	40	250		N		S	S		CL-ML	22							on DSL toe
383 CA			78 4-3	DS	1	D	65	65	4	626	Р	SE	40	250		N		S	S		CL-ML	22							on DSL toe
384 CA		3 19		DS	2	D	100	65	4	963	I	SW	40	385		N		Н	S		CL-ML	7							
385 CA		2 19		DS	2	D	65	65	4	626	N	SE	0	0		N		N	S		GC-GM	8		_					
386 CA 387 CA		1 19	78 4-5 78 4-5	DS DS	2	D	65 65	65 65	4	626 782	- 1	NW SW	40 40	250 313		N		N H	S N	S	GC-GM GC-GM	12 22		_					
388 CA			78 5-3	DS	2	D	65	65	4	626	-i l	SW	40	250		N		N	S		GC-GM	10							
389 CA			78 5-3	DS	2	Q	100	65	5	1204	i	SW	40	481		N		S	N	М	GC-GM	7							
390 CA			78 5-3	DS	3	D	130	100	4	1926	1	SE	40	770		N		Ν	S		GC-GM	10							
391 CN			78 5-3	DS	3	D	100	100	4	1481	I	SW	40	593		N		Н	S		GC-GM	5							
392 CN			78 6-2	DS	2	D	100	65	4	963	Р	SE	40	385		N	С	S	S		GM	5		_					
393 CN 394 CN			78 6-2 78 6-2	DS DS	2	D	65 65	65 100	4	626 963	P P	SW SW	40 40	250 385		N N		S S	S S		GM GM	10 12		_					
394 CN			78 6-2	DS	3	D	65	65	4	626	Р	NE	40	250		N		S	S		GM	12		_	-				
396 CN			78 6-2	DS	1	D	65	65	4	626	P	NE	40	250		N		S	S	1	GM	12			1				
397 CN		9 19	78 6-2	DS	1	D	65	100	4	963	Р	SW	40	385	520	N	С	S	S		GM	12							
398 CN			78 6-2	DS	1	D	65	195	4	1878	Р	SW	40	751		N		S	S		CL-ML	12							
399 CN			78 6-2	DS	1	D	65	65	4	626	P	NW	40 40	250		N		S	S		GM	10		_					
400 CN 401 CN			78 6-2 78 6-2	DS DS	1	D	65 100	65 100	4	626 1481	P	NW SW	40	250 593		N N		S H	S S		GM GM	22 10		_					
401 CN			78 7-2	DS	3	P	100	65	4	963	1	SW	40	385				N	R		CL-ML	10		-					
403 CN			78 7-2	DS	2	D	65	65	4	626	i	SW	40	250		N		N	S		CL-ML	10							
404 CN		27 19	78 7-2	DS	3	D	100	100	4	1481	I	NE	40	593		N	С	Ν	S		GC-GM	13							
405 CN			78 7-2	DS	4	D	130	100	4	1926	Р	NW	40	770		N		Ν	S		GC-GM	7							
406 CN			78 8-2	DS	4	P	65	100	4	963	1	SW	40	385		N		N	S		GC-GM	21		_	_				on DSL toe
407 CN 408 CN		25 19 25 19	78 8-2 78 8-2	DS DS	4	P	65 65	100 65	4	963 626		SW SW	40 40	385 250		N N		N N	S S		GC-GM CL-ML	12 12		_					on DSL toe
408 CN		32 19		DS	4	D	40	150	2	444	P	SW	100	444				S	R		CL-ML	10		_	-			Y	OII DSL IOP
500 GP			37 M18-6	DS	2	P	100	50	4	741	P	SW	40	296				S	S		CL-ML	22							
501 GP		27 19		DS	2	Р	100	50	4	741	Р	SW	40	296		R	P	S	S		CL-ML	22							
502 GP		27 19		DS	2	Q	50	50	4	370	Р	SE	40	148		R		S	S		CL-ML	22							
503 GP 504 GP		27 19 35 19		DS DF	2	Q	50 100	50	4	370 741	P	SE SW	40 40	148 296		R		S	S		CL-ML	22		_					
504 GP		35 19 35 19		DF	3	D	100	50 150	4	2222	P	SW	40	296		N N		H S	S S		CL-ML CL-ML	10 21		_					
506 GP		35 19		DS	2	P	50	50	4	370	Р	SW	40	148		N		S	S		CL-ML	22		-					
507 GP		26 19		DS	2	D	100	50	4	741	1	SW	75	556				H	R		CL-ML	22						Y	
508 GP		26 19	37 M19-5	DS	4	Q	75	50	4	556	Р	SW	40	222	300	N	Р	N	R		CL-ML	21							
509 GP		36 19		DS	2	Р	50	75	4	556	I	SW	40	222		N		S	S		CL-ML	22							
510 CM 511 CM		4 19	37 M17-19 37 M17-19	DS DS	2	D P	75 50	50 50	4	556 370	1	NW NE	40 40	222	300 200	N N		N	S		GC-GM CL-ML	10 22		_					
512 CM			37 M17-19 37 M17-20	DS	2	D	50	50	4	370		SW	40	148				H	S		CL-ML	17		-	-				
513 CM			37 M17-20	DJ	3	D	100	100	4	1481	P	SE	40	593				H	S	1	CL-ML	13			+				
514 CM		32 19	37 M17-20	DS	2	D	75	50	4	556	Р	SW	25	139	188	85 N	P	S	R		CL-ML	10						Y	
515 CM			37 M17-20	DS	4	D	100	75	4	1111	Р	SW	25	278			С	S	R		CL-ML	13						Y	
516 CM			87 M17-20	DS	4	D	75	50	3	417	-	SE	50	208			P	S	S	 	CL-ML	17		_				Y	
517 CM 518 CM			37 M17-20 37 M17-20	DS DS	4	D	75 50	75 50	3	625 278		NW NW	25 50	156 139				S S	S S		CL-ML CL-ML	17 17		-	+			Y	
519 CM			37 M17-20	DS	3	D	50	50	4	370	-	NW	50 40	139				H	R		GC-GM			_	+			<u> </u>	
520 CM			37 M17-20	DS	4	D	50	50	4	370	i	SW	40	148				N	R	1	GC-GM	21							
521 CM		28 19	37 M17-20	DS	3	Р	100	100	4	1481	Ň	SW	0	0	0	N	C	н	S		GC-GM	21							
522 CM			37 M17-20	DS	1	D	50	100	4	741	Р	SW	50	370			Р	S	R		CL-ML	10						Y	
523 CM			87 M18-21	DS	1	D	50	50	4	370	Р	SW	40	148			С	S	R		CL-ML	22		_					
524 CM 525 CM			37 M18-21 37 M18-21	DS DS	1	D	75 50	50 50	4	556 370	P	SW SE	40 40	222				S N	S		CL-ML GC-GM	13 21		-	+				
525 CM		3 19		DS	2	D	75	50	4	556	- <u>-</u>	SW	40	222				S	S		GC-GM	10		_	+				
527 CM		3 19		DS	2	D	50	50	4	370	-i I	NW	40	148				H	S	1	GC-GM	10		-	1				
528 CM		3 19		DS	1	D	75	75	4	833	Ň	NW	0	0		N	С	S	R	1	GC-GM	22			1				
529 CM		3 19		DS	2	D	75	75	4	833	Ì	SE	40	333				Ν	S		GC-GM	17							
530 CM		34 19		DS	2	D	50	100	4	741	Р	NW	40	296				S	S		GC-GM	10							
531 CM		34 19		DS	4	D	50	50	4	370	N	SW	0 40	0		N		Н	S S		GC-GM	10	├ ─-						
532 CM 533 CM		34 19 34 19		DS DS	4	D	75 50	100 75	4	1111 556		SW SE	40	444 222		N		S S	S		GC-GM GC-GM	10		_	+				
534 CM			37 M18-23	DS	4	D	75	50	4	556		SW	40	222					R	-	GC-GM			_	+				
		-31 13					10	00	71	000		511	-0					1 11	1 13			1.10			_	1			

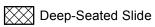
Waters	ned	:	Southo	oast Stre	ams									Sha	llow-sea	ted lands	lides									Deep	-seate	d lands	slides			Mass Wasting Inventory Sheet Mendocino Redwood Company, LLC
Unique PW	s T	F&R	Air Photo	Air Photo	Landslide	TSU	Certainty		Size	1 1	Slide	Sed.	Dom	Sed. Del.	Sed.	Sed.	Slope	Age	Slope	Slide	Road	Contrib.	Soil	Struc.	Toe	Body	Lat.	Main	DS	Complex	Field	
ID#		Sec. #	vear	frame	Type	130	Certainty	Length	Width	Depth	Vol.	Routing		Ratio	Deliverv	Delivery	(field)	Age	Form	Loc	Assoc	Area	Type	Class			Scarps	Scarps	Veq	Complex	Obs.	Comments
					DS DF DT	123	DPQ	feet	feet	feet	yd^3	PIN		25 50 75	yd^3	tons	(%)	NRO	CDP	HSIN	RSL	S M L	USCS	1 to	123		123	123	1234	ΥN	YN	
					EF RS	456							NW SW	100 (%)							NI			24	45	45	45	45				
535 CA		17		M16-13	DS	1	D	50			741	Р	NE	40	296	400		Ν	С	S	S		CL-ML	12								
536 C/		17		M16-13	DS	3	D	50			556	P	SE	50	278		80	N	C	S	R		CL-ML	10							Y	
537 CA 538 CA		17 16		M17-16 M17-16	DS DS	4	D	50 50			556 370	P	NW SW	40 40	222 148			R N	C P	S S	S S		CL-ML CL-ML	10								
539 CA		16		M17-16	DT	2	D	75	50		556	-	SW	40	222			N	C	s	S		CL-ML	10								400' torrent track
540 CA		16		M17-16	DS	4	D	50	50	5	463	P	NE	40	185			N	Č	S	N	М	CL-ML	5								
541 CA		16		M17-16	DS	4	D	100			1111	Р	SW	40	444			Ν	С	S	S		CL-ML	10								
542 CA		16		M17-16	DS	4	D	100			741	Р	SW	40	296			N	С	S	S		CL-ML	10								
543 CA 544 CA		16 17		M17-16 M17-16	DS DS	2	D	75 75			556 417	P N	NW SW	40	222		75	N N	C C	S N	S R		CL-ML CL-ML	22							Y	
545 CA		9		M17-16	DS	1	P	75			556	P	SE	100	556		75	N	c	S	N		CL-ML	22							Y	-
546 CA		9		M17-16	DS	1	D	50	50	5	463	P	SE	100	463		75	N	C	S	S		CL-ML	22							Ý	on DSL body
547 CA		9		M17-16	DS	1	D	75	50	4	556	Р	SE	50	278	375	85	Ν	Р	S	S		CL-ML	21							Y	
548 CA		9		M17-16	DS	1	D	50	50	3	278	P	NW	75	208		90	Ν	С	S	S		CL-ML	12							Y	
549 CA 550 CA		9 16		M17-16 M18-18	DS DS	3	D	75 50	75	4	833 370		SE SW	40 40	333 148			N N	C C	H N	S S		CL-ML CL-ML	22 10	\vdash							
551 CA		16		M18-18	DS	2	D	50	50	4	370	N	NW	40	146			N	C	N	S		CL-ML	22	\vdash							
552 CA		4		M18-18	DS	3	D	75			556	N	SE	0	0			N	C	N	R		SM	12								
553 C/		9		M18-18	DS	1	D	50	50	4	370	Р	SE	40	148			Ν	Ρ	S	S		CL-ML	10								
554 CA		9 10		M18-18 M18-18	DS	2	D	75		4	833	P	SE	40	333			N N	C	S	S		CL-ML CL-ML	10								
555 CA 556 CA		10		M18-18	DS DS	1	D	50 75			556 833	P	SW SW	40 40	222 333			N	P P	S S	S S		CL-ML	10								
557 CA		10		M18-18	DS	1	D	50			370	P	SW	40	148			N	P	s	S		CL-ML	22								
558 CA		3		M18-18	DS	4	D	50	50		370	1	SE	40	148			Ν	С	Н	S		CL-ML	21								
559 CA		10		M18-18	DS	2	D	100			1481	1	SE	40	593			N	С	N	S		CL-ML	10								
560 CA 561 CA		10		M18-18 M19-20	DS DS	2	D	75 75			1111 556	-	SW SW	40 40	444 222			N N	C C	N N	S S		CL-ML CL-ML	22 21								on DSL toe
562 CA		2		M19-20	DS	2	D	50			370		SW	40	148			N	c	N	S		GC-GM									
563 CA		2		M19-20	DS	3	D	50	50	4	370	1	NW	40	148			N	C	N	S		GC-GM									
564 CA		2		M19-20	DS	2	D	75			556	I	SW	40	222			Ν	С	Ν	S		GC-GM	13								
565 CA		1		M20-21	DS	2	D P	50 50			370	1	SE	40	148			z	о 0	N	S		GC-GM									
566 CA 567 CA		11 11		M19-19 M19-19	DS DS	3	D	50			741 370		NW SW	40 40	296 148			N	с С	N N	S S		CL-ML GC-GM	22								
568 CA		14		M19-19	DS	4	D	50			463	N	SW	40	0	0		N	č	N	N	S	GM	15								
569 CA		14		M20-20	DS	2	D	75			833	Р	SW	40	333			Ν	С	S	S		CL-ML	21								
570 CA		11		M20-20	DS	4	D	100			1111		NE	40	444			N	С	N	S		GC-GM									on DSL
571 CA 572 CA		12 11		M20-20 M20-20	DS DS	2	D	50 50		4	370 370	P	SW	40 40	148 148			N N	C P	S N	S S		GC-GM GC-GM									
573 GL		30		M21-11	DS	2	D	50			556	1	NE	40	222			R	C	N	S		GC-GM									
574 GL		31		M21-11	DS	2	D	50	50	4	370	I	NE	40	148			Ν	C	Ν	R		GC-GM									
575 CN		25		15-188	DS	4	D	100			1389	Ν	SW	0	0			Ν	С	Н	Ν	S	CL-ML	10								on DSL crown
576 CA 577 CA		9		field obs. field obs.	DS DS	1	D	60 80			667 1067	P	SE SE	100 50	667 533		120 90	0	P	S S	N S	M	CL-ML CL-ML	10							Y	
577 CA		32		field obs.	DS	4	D	70			467	<u>Р</u> Р	SW	75	350		90 70	0	P	S	R	<u> </u>	CL-ML	10							Y	+
579 CN	1	33	1987	field obs.	DS	1	D	75	45	2	250	Р	NE	75	188	253	100	0	Р	S	S		CL-ML	17							Y	
580 CN		33		field obs.	DS	1	D	60	45	4	400	Р	SE	25	100		75	0	С	S	R		CL-ML	17							Y	
581 CM 582 CM		33 33		field obs. field obs.	DS DF	1	D D	45 75	25 50	3	125 556	P	NW NW	75 25	94 139		85 75	00	C C	S S	S S		CL-ML CL-ML	10 10							Y	
582 CN		33		field obs.	DF	2	D	60		4	389	Р 	NW	75	292		65	0	P	N	S		CL-ML	10							Y	+
600 GF		17	2000		DS	4	P	50	50	4	370	P	NW	40	148		55	N	P	N	S		CL-ML	22							<u> </u>	+
601 GF	'	28	2000	8A-1	DS	4	D	75	50	4	556	I	NW	40	222	300		Ν	Р	Ν	S		CL-ML	21								
602 GF		34	2000		DF	3	D	100		8	1926	P	SW	100	1926		65	N	C	S	R		CL-ML	22							Y	300' runout
603 GF 604 GF		34 26	2000	9A-3 10A-3	DS DS	4	D	50 75			370 556	P N	NE SW	40	148		65	N N	C C	S N	S R		CL-ML CL-ML	21 13		_					Y	+
605 GF		36		11A-3	DS	2	D	75			833	1	NE	40	333		05	N	P	N	S		CL-ML	22								
606 GV	V	28	2000	9B-2	DS	4	D	75	50	4	556	I	NE	40	222	300		Ν	С	Ν	R		CL-ML	7								
607 CN		32	2000		DS	2	D	50			741	Р	NW	40	296			N	Р	S	S		CL-ML	10								
608 CM 609 CM		33 33		8B-10 8B-10	DS DS	1	D	75 100			139 1111	P	SE SW	25 50	35 556		80 70	N N	C P	S S	S S		CL-ML CL-ML	10		_					Y	
609 CN		33		8B-10 8B-10	DS	1	D	100			1111	P	SW	50	556		65	N	P	S	R		CL-ML	10							Y	+
611 CN		33		8B-10	DS	4	D	75			556		SW	40	222		50	N	P	N	R		CL-ML	22							Ŀ	
612 CM	1	34	2000	9B-10	DS	2	D	50	50	5	463	I	NW	40	185	250		Ν	Р	S	N	S	GC-GM	17								
613 CA		8	2000		DS	4	D	250			8333	Р	SW	25	2083		75	N	00	N	R		CL-ML	21							Y	
614 CA 615 CA		17 17	2000 2000		DS DS	4	D	75 50			556 370	P P	SW SE	25 100	139 370		85 95	N N	C P	S S	S S		CL-ML CL-ML	10 12	\vdash						Y	
015 0/		- 17	2000	10-2	05		U	J 30	50	4	310	۲	SE	100	370	500	30	IN	1	3	5		UL-IVIL	1 12					1		II	

Watersh	ed:		Southo	oast Stre	ams									Shal	low-sea	ted lands	lides									Deep	-seate	d lands	lides			Mass Wasting Inventory Sheet
Unique PW	с т	& R	Air Photo	Air Photo	Landslide	TOU	Certainty		Size	1	Slide	Sed.	Dom	Sed. Del.	Sed.	Sed.	Slope	Age	Slope	Slide	Road	Contrib.	Soil	Struc.	Toe	Body	Lat.	Main	DS	Complex	Field	Mendocino Redwood Company, LLC
ID#		ec.#	Vear	frame	Type	130	Certainty	Length	Width	Depth	Vol.	Routing		Ratio	Delivery	Delivery	(field)	Age	Form	Loc.	Assoc	Area	Type	Class			Scarps	Scarps	Veq.	Complex	Obs.	Comments
			1		DS DF DT	123	DPQ	feet	feet	feet	yd^3	PIN		25 50 75	yd^3	tons	(%)	NRO	CDP		RSL	SML	USCS	1 to			123			ΥN	YN	
					EF RS	456							NW SW	100 (%)							NI			24	45	45	45	45				
616 CA		8	2000		DS	4	D	50	50		370	Р	NW	40	148			Ν	С	S	S		CL-ML	21								
617 CA		9	2000		DF	4	D	75			625	P	SE	25	156		75		C	Н	R		CL-ML	10							Y	600' runout
618 CA 619 CA		9	2000		DS DS	3	D	50 50			185 370	P	SE SW	75 50	139 185		80 100		C C	N S	R N	S	CL-ML CL-ML	22 13							Y	
620 CA		9	2000		DS	1	D	50		6	833	P	SW	25	208		100		č	s	N	S	CL-ML	13							Y	
621 CA		9	2000	8B-6	DS	1	D	50	50	5	463	Р	SE	75	347	469	90	Ν	Р	S	Ν	S	CL-ML	10							Y	
622 CA		9	2000		DS	1	D	75			1667	Ρ	SE	100	1667		95		Р	S	Ν	S	CL-ML	10							Y	
623 CA 624 CA		9	2000		DS DS	2	D	100 75			741 556	-	NW NW	40 40	296 222			N	C C	N N	S S		CL-ML CL-ML	21 21								
624 CA		16 4	2000		DS	4	D	200			2963	-	SW	40	1185			N	P	N	s		CL-ML	12								
626 CA		10	2000		DF	2	D	150			4167	I	SW	40	1667			N	C	N	N	L	CL-ML	22								on DSL toe
627 CA		14		10B-3	DS	2	Р	50	50	5	463	Ν	NE	0	0	0		Ν	С	Ν	Ν	S	CL-ML	13								on DSL toe
628 CA		2		10B-6	DS	4	Q	75	100		1389	1	SW	40	556			N	Р	S	N	M	GC-GM	21								
629 CA 630 CA		2		10B-6 11B-7	DS	2	D	75 50	100 50	5	1389 370	P P	NW NW	40 40	556 148			N N	P	S S	N S	L	GC-GM GC-GM	12 12	┞──┼							
630 CA	+	6		11B-7 11B-7	DS DS	2	P	50	50	4	370	P	NW	40	148			N	P	S	s		GC-GM	12							-	+
632 CA		6		11B-7 11B-8	DS	3	Q	150	100	4	2222	1	NW	40	889			N	C	N	R		GC-GM									+
633 CN		22	2000	15C-3	DS	4	D	50	50	5	463	I	NE	40	185	250		Ν	С	S	Ν	М	CL-ML	5								
634 CN		22		15C-3	DS	2	Р	50	75	4	556	-	SW	40	222			N	0	N	S		GC-GM									
635 CM 700 GP		33 26		field obs. 19-19	DS DS	1	D	75 100		2	278 926	P N	SE SW	75 0	208 0		80 60		PC	S N	N R	M	CL-ML CL-ML	17 13	┞──┼						Y Y	on DSL
700 GF		33		17-128	DS	3	D	150			2083		SE	40	833		00	N	c	N	N	м	CL-ML	17								01 DSL
702 CA		17		16-15	DS	4	P	100		4	1111	N	SW	0	000		65		P	S	R	111	CL-ML	10							Y	
703 CA		8		16-15	DS	4	D	75	75	5	1042	Р	NW	40	417	563		Ν	С	S	Ν	М	CL-ML	12								
704 CA		16		17-125	DS	1	D	75			2083	Р	SE	40	833			N	С	S	N	L	CL-ML	22								
705 CA 706 CA		9 15		17-126 18-80	DS DT	1	D	75 75			1111 1042	P	SE NE	75 40	833 417		70	N N	C C	S H	S N	м	CL-ML CL-ML	10 18							Y	2000' torrent track
700 CA		15	2004		DS	2	D	100			1852		NE	40	741			N	c	N	N	L	CL-ML	22								
708 GP		27		19-18	DS	4	D	100	100	7	2593	1	SW	25	648		50		С	N	R		SM	13							Y	on DSL
709 GP		34		19-18	DS	4	D	75			833	Р	NE	40	333			Ν	С	Ν	S	М	CL-ML	21								
710 GP		35		19-18	DS	4	D	50			370	I P	SW	40	148		100	N	С	N	S	_	CL-ML	10							Y	
711 CA 712 CA		17		field obs. field obs.	DS DS	1	D	40 30			178 133	Р Р	SW SE	100 100	178 133		120 80		cυ	S S	N	S S	CL-ML CL-ML	12							Y	
800 GP				M19-5	EF		D	700			100	·	02	100	100	100	00		- V	-					3	2	3	2	2	N		
801 GP				M19-5	RS		Q	1600																	4	3	4	4				
802 GP				M19-5	RS		Р	1400																	4	4	4	4				
803 GP				M19-4 M17-19	RS		Q	1300 1000	600 500																3	3	4	3				
804 CM 805 CM				M17-19 M17-19	RS RS		P	1200																	4	4	3	4				
806 CM				M17-19	RS		Q	900																	3	3	4	4				
807 CM				16-19	RS		Q	1600																	3	4	4	4				
808 CM				16-19	RS		P	1300																	4	4	4	4				
809 CM 810 CM				M18-20 M18-20	RS RS		P P	1100 700															-		3	3	4	3				
810 CM				M18-20 M16-12	RS		P	800															1	-	3	3	4	3			-	+
812 CA			1987	M17-16	RS		Р	1600	1500																3	3	3	3	4	N		
813 CA			1987	M17-16	RS		Р	1200	1200																2	3	3	3				
814 CA	_			M17-17	RS		P	1300															<u> </u>		3	3	4	4				
815 CA 816 CA				M18-18 M18-18	RS RS		Q D	1200 1800																+	3	3	4	4			<u> </u>	+
816 CA 817 CA				M18-18 M19-19	RS		D	2800															-	-	2	3	3	4	4			+
818 CA				M19-19	RS		D	1600																	4	3	3	3				
819 CA				M19-19	RS		Р	1500																	3	3	4	3				
820 CA				M19-18	RS		D	700										-			-			-	3	2	4	3				
821 CA 822 CA			1987	M19-18 M20-19	RS RS		P P	800 1600																-	4	3	4	4				
823 CA				M20-19 M20-19	RS		Р	1300															1	1	4	3	4	3				+
824 CA				M20-19	RS		D	1500																	3	3	3	2				
825 CA			1987	M20-20	RS		D	1100	1000																3	3	4	3	4	N		
826 CA				M20-20	RS	L	P	1200																L	3	4	4	3				
827 CA 828 CA	-			M20-20 M20-21	RS RS		Q	1200 900															+	+	4	4	4	4				
828 CA 829 CA	+			M20-21 M20-21	RS		Q	800															1	-	4	3	4	4			<u> </u>	+
830 CA				20-225	RS		P	1300															1	1	4	3	3	4				+
831 CA				20-225	RS		Q	1100																	4	4	4	4	4	Ν		

Wate	ershe	d:	Southc	oast Stre	ams	1		1																		_						Mass Wasting Inventory Sheet
						1								Sha	allow-sea	ted lands	lides									Dee	p-seate	ed lands	lides			Mendocino Redwood Company, LLC
Unique	PWS	T & R	Air Photo	Air Photo	Landslide	TSU	Certainty	r	Size		Slide	Sed.	Dom.	Sed. Del.	Sed.	Sed.	Slope	Age	Slope	Slide	Road	Contrib.	Soil	Struc.	Toe	Body	Lat.	Main	DS	Complex	Field	
ID#		Sec. #	year	frame	Туре			Length	Width	Depth	Vol.	Routing	Aspec	t Ratio	Delivery	Delivery	(field)		Form	Loc.	Assoc.	Area	Type	Class	Activity	Morph.	Scarps	Scarps	Veg.		Obs.	Comments
					DS DF DT	123	DPQ	feet	feet	feet	yd^3	PIN	NE SE	25 50 75	yd^3	tons	(%)	NRO	CDP	HSIN	RSL	S M L	USCS	1 to	123	123	123	123	1234	ΥN	ΥN	
					EF RS	456							NW SV	v 100 (%)							NI			24	45	45	45	45				
832	CN		2004	23-27	RS		Р	700	600)															3	3	4	3	3	Ν		
833	CN		2004	23-28	RS		Q	1300	1200)															3	3	4	3	4	Y		
834	CN		2004	23-29	RS		D	2000	1100)															3	3	4	3	4	Ν		
835	CN		2004	23-29	RS		Q	800	500)															3	3	4	4	4	Ν		
836	CN		2004	25-119	RS		P	1200	900)															3	3	4	3	4	Ν		
837	CN		2004	25-119	RS		Q	1500	800)															3	3	4	3	4	Y		
838	CA		1987	M17-16	RS		Р	1000	800)															4	4	4	4	4	Y		
839	CM		2004	16-19	RS		D	700	600)															4	4	4	4	4	Y		

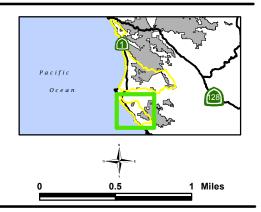
Copyright© 2014 Mendocino Redwood Company, LLC

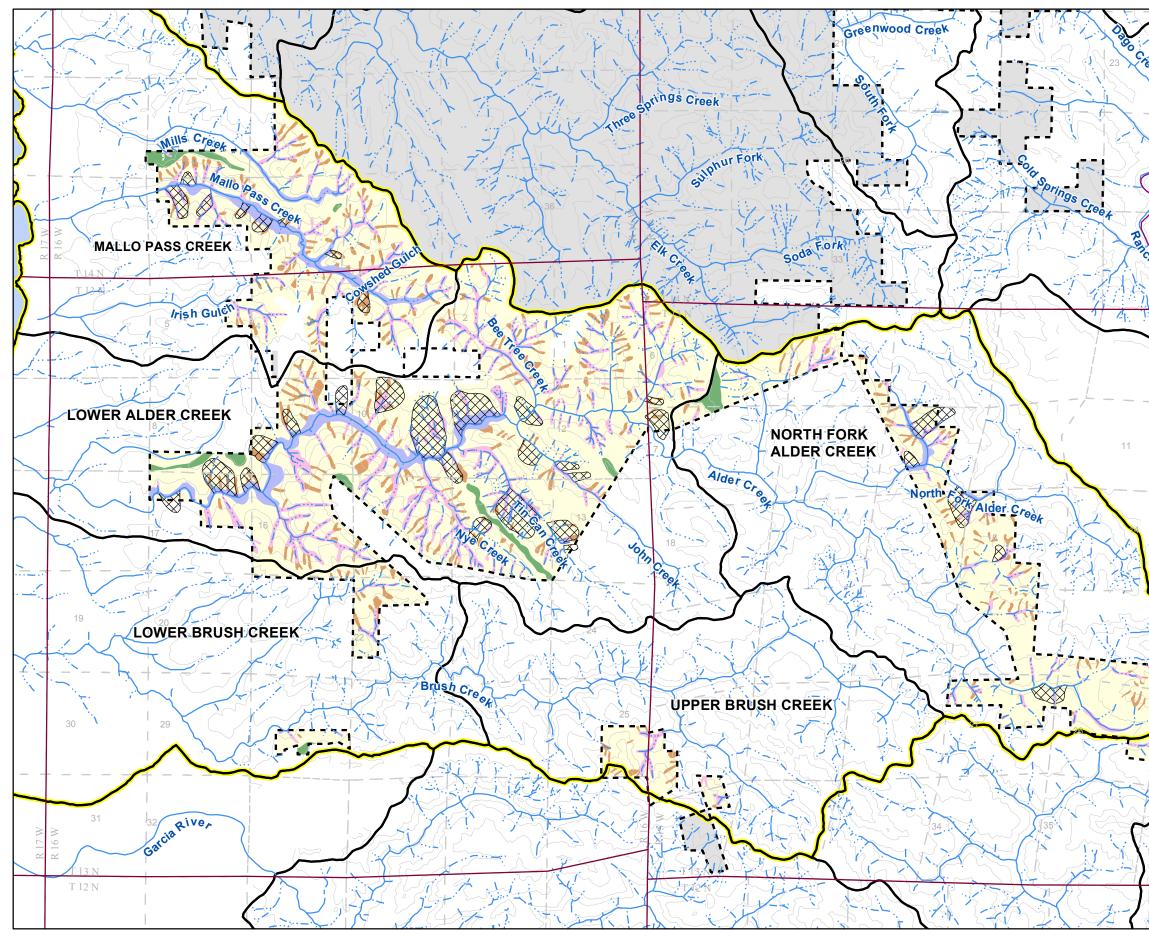
Southcoast Streams Watershed Analysis Unit


Point Arena Creek Planning Watershed

Map A-2 (b) Terrain Stability Units

This map presents an interpretation of the terrain stability units (TSUs) delineated for the Southcoast Streams WAU. The TSUs characterize the landscape by similar geomorphic attributes, shallow-seated landslide potential, and sediment delivery potential. The TSU designations for the Southcoast Streams WAU are only meant to be general characterizations of similar geomorphic and terrain characteristics related to shallow-seated landslides. Deep-seated landslides are also shown on this map. The deep-seated landslides have been included to provide land managers with supplemental information to guide evaluation of harvest planning and subsequent needs for geologic review. The landscape and geomorphic setting in the Southcoast Streams WAU is certainly more complex than generalized TSUs delineated for this evaluation. The TSUs are only meant to be a starting point for gauging the need for site-specific field assessments. Field observations will override unit boundaries of this map.

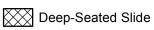

Terrain Stability Units


Unit	Description
1	Steep slopes along low gradient watercourses
2	Steep slopes adjacent to select
2	intermittent or ephemeral streams
3	Steep dissected or convergent topography
4	Non-dissected topography
5	Low relief topography
6	Identified earthflow complexes
8	Ohlson Ranch Formation

- MRC Ownership
- Planning Watershed Boundary
- Watershed Analysis Unit Boundary
- 200' Contour Interval

- Class I
- ··· Class II
- ----- Class III

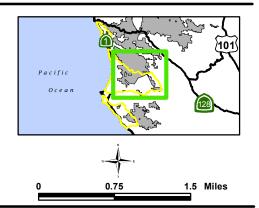
Copyright© 2014 Mendocino Redwood Company, LLC

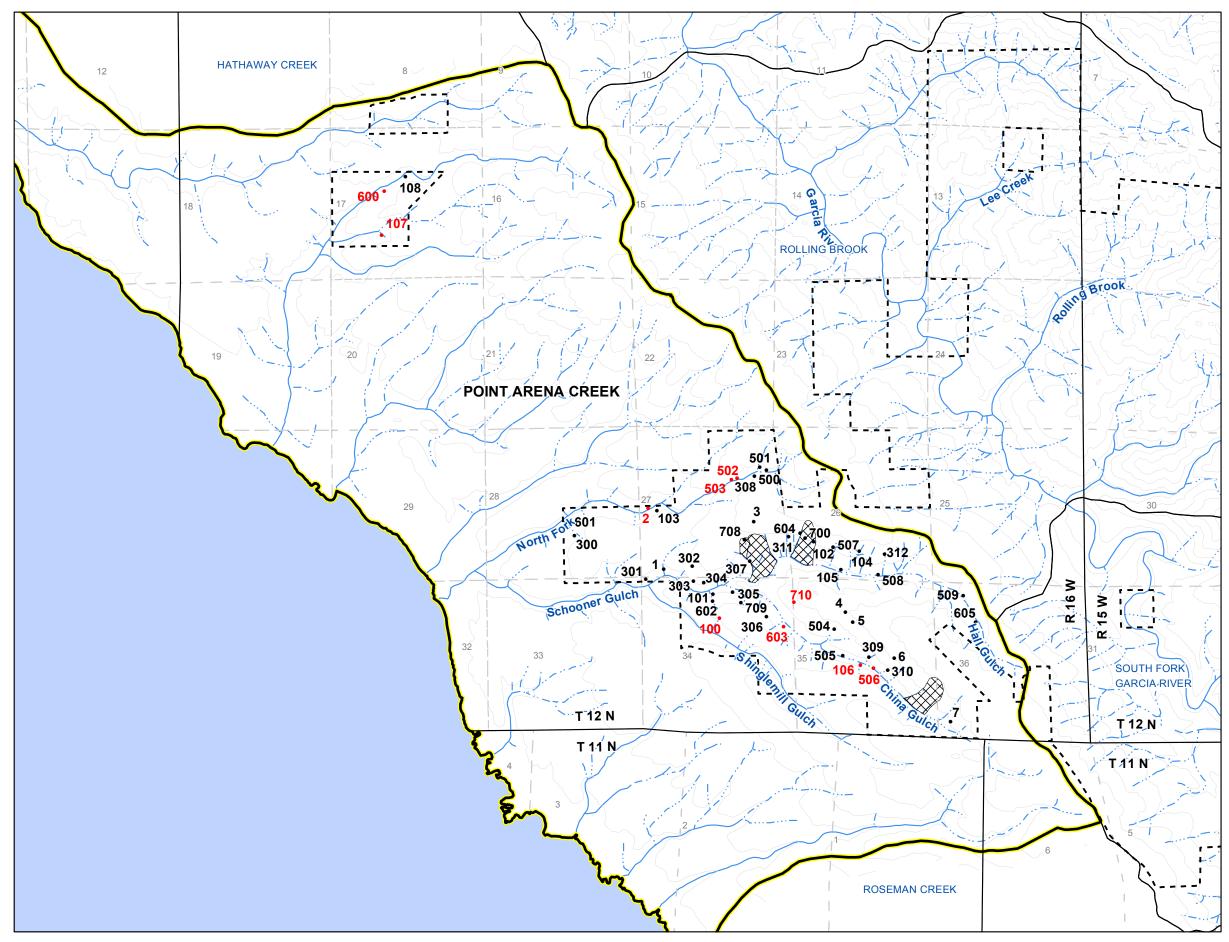

Mallo Pass, Lower Alder, N.F. Alder, Lower and Upper Brush Creeks Planning Watersheds

Map A-2 (a) Terrain Stability Units

This map presents an interpretation of the terrain stability units (TSUs) delineated for the Southcoast Streams WAU. The TSUs characterize the landscape by similar geomorphic attributes, shallow-seated landslide potential, and sediment delivery potential. The TSU designations for the Southcoast Streams WAU are only meant to be general characteristics related to shallow-seated landslides. Deep-seated landslides are also shown on this map. The deep-seated landslides have been included to provide land managers with supplemental information to guide evaluation of harvest planning and subsequent needs for geologic review. The landscape and geomorphic setting in the Southcoast Streams WAU is certainly more complex than generalized TSUs delineated for this evaluation. The TSUs are only meant to be a starting point for gauging the need for site-specific field assessments. Field observations will override unit boundaries of this map.

Terrain Stability Units


Unit	Description
1	Steep slopes along low gradient watercourses
2	Steep slopes adjacent to select
2	intermittent or ephemeral streams
3	Steep dissected or convergent topography
4	Non-dissected topography
5	Low relief topography
6	Identified earthflow complexes
8	Ohlson Ranch Formation

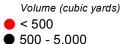


Creek

- MRC Ownership
- Planning Watershed Boundary
- Watershed Analysis Unit Boundary
- 400' Contour Interval

- Class I
- ·· Class II
- ----- Class III

Copyright© 2014 Mendocino Redwood Company, LLC


Southcoast Streams Watershed Analysis Unit

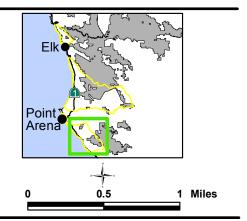
Point Arena Creek Planning Watershed

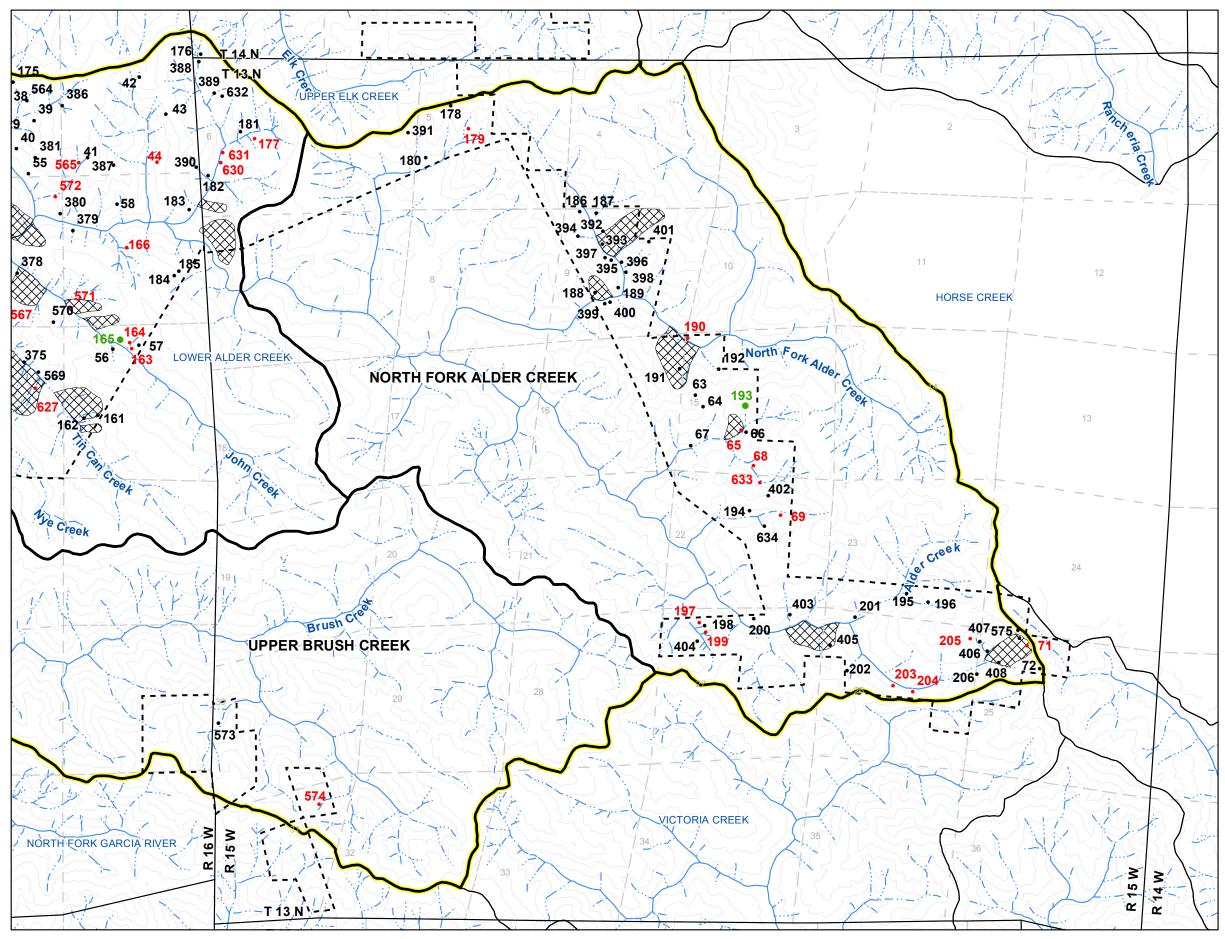
Map A-1 (c) Mass Wasting Inventory

This map presents the location of mass wasting features identified on the MRC land in the Southcoast Streams Watershed Analysis Unit. The mass wasting features were developed from an interpretation of aerial photographs from the 1950s-2004 with field observations taken in 2010. All shallow-seated landslides are identified as a point plotted on the map at the interpreted head scarp of the failure. Deep-seated landslides are represented as a polygon representing the interpreted perimeter of the landslide feature. Physical and geomorphic characteristics of mapped landslides are categorized in a database in the mass wasting report for the Southcoast Streams WAU (Section A).

Shallow-Seated Slide

• 500 - 5,000



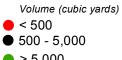


Deep-Seated Slide

- ■ MRC Ownership
- Planning Watershed Boundary
- Alder Creek/Schooner Gulch
- Watershed Analysis Unit Boundary
- 200' Contour Interval

- Class I
- · · · Class II
- ---- Class III

Copyright© 2014 Mendocino Redwood Company, LLC

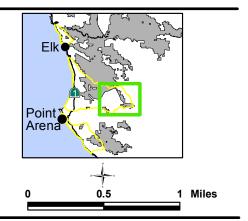

Southcoast Streams Watershed Analysis Unit

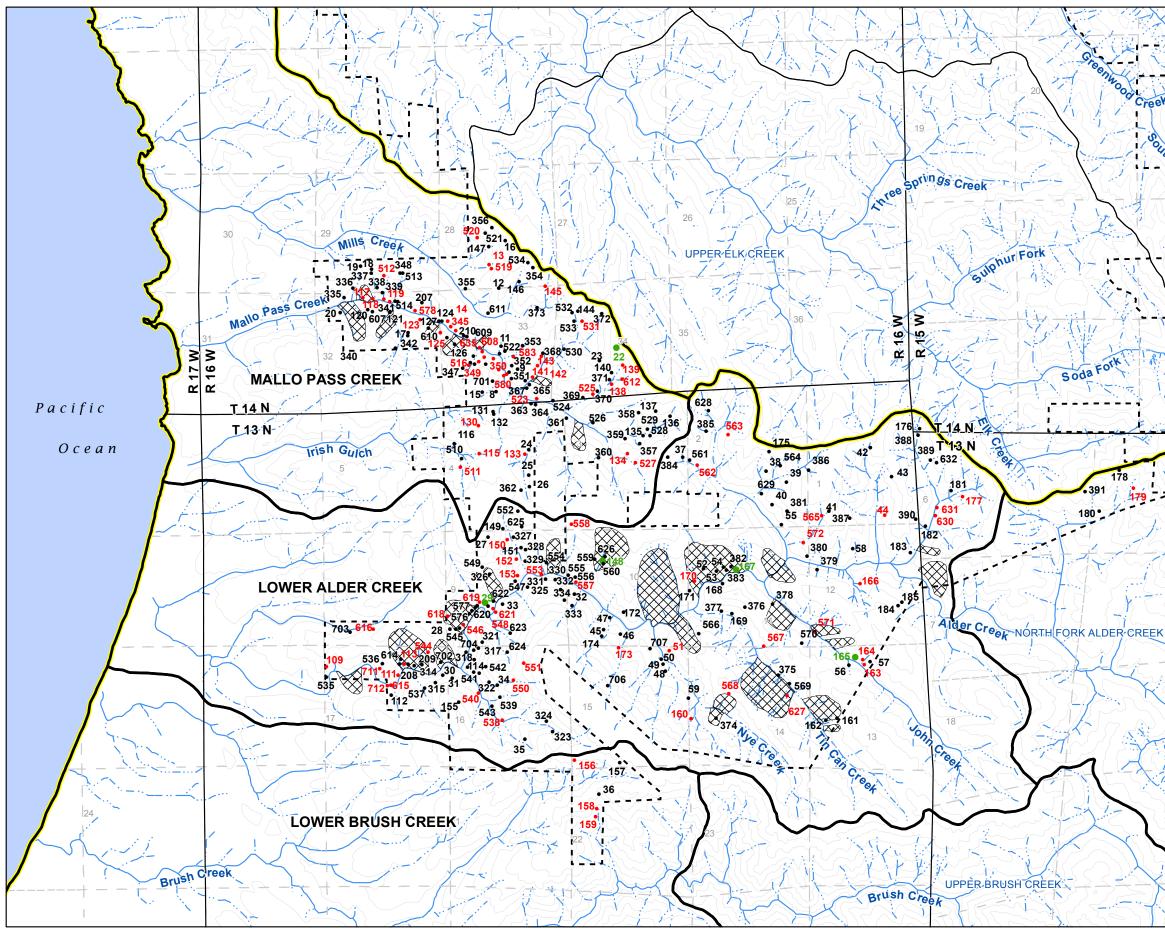
North Fork Alder Creek & Upper Brush Creek Planning Watersheds

Map A-1 (b) Mass Wasting Inventory

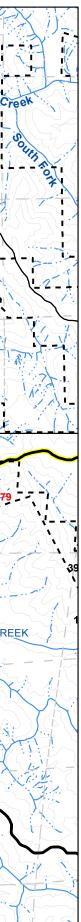
This map presents the location of mass wasting features identified on the MRC land in the Southcoast Streams Watershed Analysis Unit. The mass wasting features were developed from an interpretation of aerial photographs from the 1950s-2004 with field observations taken in 2010. All shallow-seated landslides are identified as a point plotted on the map at the interpreted head scarp of the failure. Deep-seated landslides are represented as a polygon representing the interpreted perimeter of the landslide feature. Physical and geomorphic characteristics of mapped landslides are categorized in a database in the mass wasting report for the Southcoast Streams WAU (Section A).

Shallow-Seated Slide


• 500 - 5,000 ● > 5,000



Deep-Seated Slide


- ■ MRC Ownership
- Planning Watershed Boundary
- Alder Creek/Schooner Gulch
- Watershed Analysis Unit Boundary
- 200' Contour Interval

- Class I
- · · Class II
- ---- Class III

Copyright© 2014 Mendocino Redwood Company, LLC

Southcoast Streams Watershed Analysis Unit

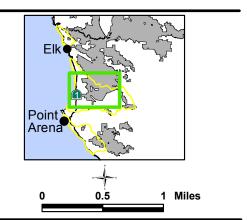
Mallo Pass, Lower Alder & Lower Brush Creeks Planning Watersheds

Map A-1 (a) Mass Wasting Inventory

This map presents the location of mass wasting features identified on the MRC land in the Southcoast Streams Watershed Analysis Unit. The mass wasting features were developed from an interpretation of aerial photographs from the 1950s-2004 with field observations taken in 2010. All shallow-seated landslides are identified as a point plotted on the map at the interpreted head scarp of the failure. Deep-seated landslides are represented as a polygon representing the interpreted perimeter of the landslide feature. Physical and geomorphic characteristics of mapped landslides are categorized in a database in the mass wasting report for the Southcoast Streams WAU (Section A).

Shallow-Seated Slide

Volume (cubic yards) ● < 500 • 500 - 5,000



Deep-Seated Slide

- ■ MRC Ownership
- Planning Watershed Boundary
- Alder Creek/Schooner Gulch
- Watershed Analysis Unit Boundary
- 200' Contour Interval

- Class I
- · · Class II
- ---- Class III

